Β Solve the following linear programming problem using the simplex method.
πππππππ§π π = 2100π¦1 + 2400π¦2 + 10π¦3 β 70π¦4
π π’πππππ‘ π‘π
25π¦1 + 15π¦2 + π¦3 β₯ 250
20π¦1 + 30π¦2 β π¦3 β π¦4 β₯ 300
π¦1 β₯ 0, π¦2 β₯ 0, π¦3 β₯ 0 , π¦4 β₯ 0Β
Solution:
Given problem is
MinΒ z=2100y1+2400y2+10y3-70y4
subject to
25y1+15y2+y3β₯250
20y1+30y2-y3-y4β₯300
y1β₯0, y2β₯0, y3β₯0, y4β₯0
andΒ y1,y2,y3,y4β₯0;
After introducing surplus,artificial variables
MinΒ z=2100y1+2400y2+10y3-70y4+0S1+0S2+0S3+0S4+0S5+0S6+MA1+MA2+MA3+MA4+MA5+MA6
subject to
25y1+15y2+y3-S1+A1=250
20y1+30y2-y3-y4-S2+A2=300
y1-S3+A3=0
y2-S4+A4=0
y3-S5+A5=0
y4-S6+A6=0
andΒ y1,y2,y3,y4,S1,S2,S3,S4,S5,S6,A1,A2,A3,A4,A5,A6β₯0
Since allΒ Zj-Cjβ€0
Hence, optimal solution is arrived with value of variables as :
y1=0,y2=16.6667,y3=0,y4=200
MinΒ z=26000
Comments
Leave a comment