Solve the following linear programming problem using the simplex method.
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑃 = 2100𝑦1 + 2400𝑦2 + 10𝑦3 − 70𝑦4
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
25𝑦1 + 15𝑦2 + 𝑦3 ≥ 250
20𝑦1 + 30𝑦2 − 𝑦3 − 𝑦4 ≥ 300
𝑦1 ≥ 0, 𝑦2 ≥ 0, 𝑦3 ≥ 0 , 𝑦4 ≥ 0
Solution:
Given problem is
Min z=2100y1+2400y2+10y3-70y4
subject to
25y1+15y2+y3≥250
20y1+30y2-y3-y4≥300
y1≥0, y2≥0, y3≥0, y4≥0
and y1,y2,y3,y4≥0;
After introducing surplus,artificial variables
Min z=2100y1+2400y2+10y3-70y4+0S1+0S2+0S3+0S4+0S5+0S6+MA1+MA2+MA3+MA4+MA5+MA6
subject to
25y1+15y2+y3-S1+A1=250
20y1+30y2-y3-y4-S2+A2=300
y1-S3+A3=0
y2-S4+A4=0
y3-S5+A5=0
y4-S6+A6=0
and y1,y2,y3,y4,S1,S2,S3,S4,S5,S6,A1,A2,A3,A4,A5,A6≥0
Since all Zj-Cj≤0
Hence, optimal solution is arrived with value of variables as :
y1=0,y2=16.6667,y3=0,y4=200
Min z=26000
Comments