Question #249769

2.3 Solve the following linear programming graphically [5]

Minimize 𝑧 = 3𝑥 + 9𝑦

Subject to the constraints: 𝑥 + 3𝑦 ≥ 6

𝑥 + 𝑦 ≤ 10

𝑥 ≤ 𝑦

𝑥 ≥ 0; 𝑦 ≥ 0


1
Expert's answer
2021-10-12T05:09:25-0400

Minimize 𝑧=3𝑥+9𝑦𝑧 = 3𝑥 + 9𝑦

subject to the constraints


x+3y6x+y10xyx0,y0\begin{matrix} x+3y\geq6 \\ x+y \leq 10 \\ x \leq y \\ x\geq0, y\geq0 \end{matrix}

Find the point(s) of intersection


y=13x+2y=-\dfrac{1}{3}x+2

y=x+10y=-x+10

x=0:x=0:


y=13(0)+2,Point A(0,2)y=-\dfrac{1}{3}(0)+2, Point\ A(0,2)

y=0+10,Point B(0,10)y=-0+10, Point\ B(0,10)

13x+2=x-\dfrac{1}{3}x+2=x

43x=2\dfrac{4}{3}x=2

x=1.5,y=1.5,Point D(1.5,1.5)x=1.5, y=1.5,Point\ D(1.5,1.5)


x+10=x-x+10=x

2x=102x=10

x=5,y=5,Point C(5,5)x=5, y=5,Point\ C(5,5)


Point A(0,2):𝑧(0,2)=3(0)+9(2)=18A(0,2):𝑧(0,2) =3(0) + 9(2)=18


Point B(0,10):𝑧(0,10)=3(0)+9(10)=90B(0,10):𝑧(0,10) = 3(0) +9(10)=90


Point C(5,5):𝑧(5,5)=3(5)+9(5)=60C(5,5):𝑧(5,5) = 3(5) +9(5)=60


Point D(1.5,1.5):𝑧(1.5,1.5)=3(1.5)+9(1.5)=18D(1.5,1.5):𝑧(1.5,1.5) = 3(1.5) +9(1.5)=18


The function zz has a minimum with value of 1818 at (0,2)(0,2) and at 1.5,1.5).1.5,1.5).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS