Minimize z=3x+9y
subject to the constraints
x+3y≥6x+y≤10x≤yx≥0,y≥0 Find the point(s) of intersection
y=−31x+2
y=−x+10 x=0:
y=−31(0)+2,Point A(0,2)
y=−0+10,Point B(0,10)
−31x+2=x
34x=2
x=1.5,y=1.5,Point D(1.5,1.5)
−x+10=x
2x=10
x=5,y=5,Point C(5,5)
Point A(0,2):z(0,2)=3(0)+9(2)=18
Point B(0,10):z(0,10)=3(0)+9(10)=90
Point C(5,5):z(5,5)=3(5)+9(5)=60
Point D(1.5,1.5):z(1.5,1.5)=3(1.5)+9(1.5)=18
The function z has a minimum with value of 18 at (0,2) and at 1.5,1.5).
Comments