Question #243653
Solve the following question through simplex method
Max Z= 4X1 + 3X2
S+C
2X1 +X2 < 1000
X1 + X2 < 800
X1< 400
X2< 700
X1, X2 >0
1
Expert's answer
2021-09-29T17:13:38-0400

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropriate


1. As the constraint-1 is of type '≤' we should add slack variable S1S_1


2. As the constraint-2 is of type '≤' we should add slack variable S2S_2


3. As the constraint-3 is of type '≤' we should add slack variable S3S_3


4. As the constraint-4 is of type '≤' we should add slack variable S4S_4


After introducing slack variables

Max z=4x1+3x2+0S1+0S2+0S3+0S4Subject to   2x1+x2+S1                        =1000    x1+x2        +S2                =800    x1                         +S3        =400             x2                        +S4=700All variables nonnegative\text{Max } z=4x_1+3x_2+0S_1+0S_2+0S_3+0S_4\\ \text{Subject to }\\ ~~2x_1+x_2+S_1~~~~~~~~~~~~~~~~~~~~~~~~=1000\\ ~~~~x_1+x_2~~~~~~~~+S_2~~~~~~~~~~~~~~~~=800\\ ~~~~x_1~~~~~~~~~~~~~~~~~~~~~~~~~+S_3~~~~~~~~=400\\ ~~~~~~~~~~~~~x_2~~~~~~~~~~~~~~~~~~~~~~~~+S_4=700\\ \text{All variables nonnegative}



Negative minimum zjcjz_j-c_j  is -4 and its column index is 1. So, the entering variable is x1x_1 .


Minimum ratio is 400 and its row index is 3. So, the leaving basis variable is S3S_3 .


∴ The pivot element is 1.

R3(new)=R3(old),R1(new)=R1(old)2R3(new)R2(new)=R2(old)R3(new),R4(new)=R4(old)R_3(new)=R_3(old), R_1(new)=R_1(old)-2R_3(new)\\ R_2(new)=R_2(old)-R_3(new), R_4(new)=R_4(old)


Negative minimum zjcjz_j-c_j  is -3 and its column index is 2. So, the entering variable is x2x_2 .


Minimum ratio is 200 and its row index is 1. So, the leaving basis variable is S1S_1 .


∴ The pivot element is 1.

R1(new)=R1(old),R2(new)=R2(old)R1(new)R3(new)=R3(old),R4(new)=R4(old)R1(new)R_1(new)=R_1(old), R_2(new)=R_2(old)-R_1(new)\\ R_3(new)=R_3(old), R_4(new)=R_4(old)-R_1(new)



Negative minimum zjcjz_j-c_j  is -2 and its column index is 5. So, the entering variable is S3S_3 .


Minimum ratio is 200 and its row index is 2. So, the leaving basis variable is S2S_2 .


∴ The pivot element is 1.

R2(new)=R2(old),R1(new)=R1(old)+2R2(new)R3(new)=R3(old)R2(new),R4(new)=R4(old)2R2(new)R_2(new)=R_2(old), R_1(new)=R_1(old)+2R_2(new)\\ R_3(new)=R_3(old)-R_2(new), R_4(new)=R_4(old)-2R_2(new)


Since all zjcj0z_j-c_j\geq0

Hence, optimal solution is arrived with value of variables as :

x1=200,x2=600x_1=200,x_2=600


Max z=2600Max~z=2600


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS