A transportation problem involves the following costs, supply, and demand.
To
From 1 2 3 4 Supply
1 $500 750 300 450 12
2 650 800 400 600 17
3 400 700 500 550 11
Demand 10 10 10 10
Required:
i. Find the initial solution using the northwest corner method, the minimum cell cost
method, and Vogel's Approximation Method. Compute total cost for each.
ii. Using the VAM initial solution, find the optimal solution using the modified distribution
method (MODI).
Solution:
Northwest Corner Method
To
From 1 2 3 4 Supply
1 $500 750 300 450 12
10 2
2 650 800 400 600 17
8 9
3 400 700 500 550 11
1 10
Demand 10 10 10 10 40
Z = 300X13Â + 450X14Â + 800X22Â + 600X24Â + 400X31Â + 550X34
Z = 300 (10)
+ 450 (2) + 800 (10) + 600 (7) + 400 (10) + 550 (1)
Z = 3,000 + 900 + 8,000 + 4,200 + 4,000 + 550
Answer: Total Cost: Z = $ 20,650
Minimum cell cost method:
Initial feasible solution is
The minimum total transportation cost =300×10+450×2+800×10+600×7+400×10+550×1=20650
Here, the number of allocated cells = 6 is equal to m + n - 1 = 3 + 4 - 1 = 6
∴ This solution is non-degenerate
Vogel’s Approximation Method
To
From 1 2 3 4 Supply
1 $500 750 300 450 12
2 10 300
2 650 800 400 600 17
7 10 200
3 400 700 500 550 11
10 1 150
Demand 10 10 10 10 40
Z = 750X12Â + 450X14Â + 800X22Â + 400X23Â + 400X31Â + 700X32
Z = 750 (2) + 450 (10) + 800 (7) + 400 (10) + 400 (10) + 700 (1)
Z = 1,500 + 4,500 + 5,600 + 4,000 + 4,000 + 700
Answer: Total Cost: Z = $ 20,300
ii.
X12Â Â : u1Â + v2Â = 750 Let u1Â = 0
X14Â : u1Â + v4Â = 450 Let v2Â = 750
X22Â : u2Â + v2Â = 800 Let v4Â = 450
X23Â : u2Â + v3Â = 400 Let u2Â = 50
X31Â : u3Â + v1Â = 400 Let v3Â = 350
X32 : u3 + v2 = 700 Let u3 = –50
v1Â = 450
vi v1 = 450 v2 = 750 v3 = 350 v4 = 450
To
ui From 1 2 3 4 Supply
u1Â = 0Â 1 $500 750 300 450 12
2 10
u2Â = 50Â 2 650 800 400 600 17
7 10
u3 = –50 3 400 700 500 550 11
10 1
Demand 10 10 10 10 40
X11 : k11 = 500 – 0 – 450 = 50
X13 : k13 = 300 – 0 – 350 = –50
X21 : k21 = 650 – 50 – 450 = 150
X24 : k24 = 600 – 50 – 450 = 50
X33 : k33 = 500 – (–50) – 350 = 200
X34 : k34 = 550 – (–50) – 450 = 150
To
From 1 2 3 4 Supply
1 $500 - 750 + 300 450 12
2 10
2 650 + 800 - 400 600 17
7 10
3 400 700 500 550 11
10 1
Demand 10 10 10 10 40
To
From 1 2 3 4 Supply
1 $500 750 300 450 12
2 10
2 650 800 400 600 17
7 10
3 400 700 500 550 11
10 1
Demand 10 10 10 10 40
X13Â : u1Â + v3Â = 300 Let u1Â = 0
X14Â Â Â : u1Â + v4Â = 450 Let v3Â = 300
X22Â Â Â : u2Â + v2Â = 800 Let v4Â = 450
X23Â Â Â : u2Â + v3Â = 400 Let u2Â = 100
X31Â Â Â : u3Â + v1Â = 400 Let v2Â = 700
X32Â Â Â : u3Â + v2Â = 700 Let u3Â = 0
v1Â = 400
vi v1 = 450 v2 = 750 v3 = 350 v4 = 450
To
ui From 1 2 3 4 Supply
u1Â = 0Â 1 $500 750 300 450 12
2 10
u2Â = 100Â 2 650 800 400 600 17
9 8
u3Â = 0Â 3 400 700 500 550 11
10 1
Demand 10 10 10 10 40
X11 : k11 = 500 – 0 – 400 = 100
X12 : k12 = 750 – 0 – 700 = 50
X21 : k21 = 650 – 100 – 400 = 150
X24 : k24 = 600 – 100 – 450 = 100
X33 : k33 = 500 – 0 – 300 = 200
X34 : k34 = 500 – 0 – 450 = 50
Z = 300X13Â + 450X14Â + 800X22Â + 400X23Â + 400X31Â + 700X32Â
Z = 300 (2) + 450 (10) + 800 (9) + 400 (8) + 400 (10) + 700 (1)
Z = 600 + 4,500 + 7,200 + 3,200 + 4,000 + 700
Answer:Â Z = $ 20,200
Comments
Leave a comment