Question #249770

1.     A firm manufactures two products; the net profit on product 1 is Rupees 3 per unit and Rupees 5 per unit on product 2. The manufacturing process is such that each product has to be processed in two departments D1 and D2. Each unit of product1 requires processing for 1 minute at D1 and 3 minutes at D2; each unit of product 2 requires processing for 2 minutes at D1 and 2 minutes at D2. Machine time available per day is 860 minutes at D1 and 1200 minutes at D2. How much of product 1 and 2 should be produced every day so that total profit is maximum. Make the mathematical model for the given problem.



1
Expert's answer
2021-10-13T17:32:37-0400

Let x1x_1 and x2x_2 be levels of production of two products, then

z(x1,x2)=3x1+5x2z(x_1,x_2)=3\cdot x_1+5\cdot x_2  is profit function and it should be maximized so 3x1+5x2max3\cdot x_1+5\cdot x_2\rarr max

For manufacturing  x1x_1unis of product 1 and x2x_2 units of product 2 we need in

using x1+2x2x_1+2\cdot x_2 minutes on depatment D1 and 3x1+2x23\cdot x_1+2\cdot x_2 minutes on department D2 that have availiable machine time 800 and 1200 minutes per day correspondingly therefore we have two restrictions for the plan

x1+2x2800;3x1+2x21200;x_1+2\cdot x_2\le800;\\ 3\cdot x_1+2\cdot x_2\le1200;\\

We also must take in account positiveness restrictions :

x10,x20x_1\ge0,x_2\ge0

Thus we have math model of production:

3x1+5x2max3\cdot x_1+5\cdot x_2\rarr max

x1+2x2800;3x1+2x21200;x_1+2\cdot x_2\le800;\\ 3\cdot x_1+2\cdot x_2\le1200;\\

x10,x20x_1\ge0,x_2\ge0

Standard form convenient for simplex method is

z->max;

z3x15x2=0;z-3\cdot x_1-5\cdot x_2=0;

x1+2x2+1t+0s=800;3x1+2x2+0t+1s=1200;x1,x2,t,s0x_1+2\cdot x_2+1\cdot t+0\cdot s=800;\\ 3\cdot x_1+2\cdot x_2+0\cdot t+1\cdot s=1200;\\ x_1,x_2,t,s\ge0

To solve we use simplex method:

zx1x2tsb13500001!210800032011200\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} z & x_1 & x_2 &t&s&b\\ \hline 1 & -3 & -5 &0&0&0\\ \hdashline 0 & 1 & ! 2&1&0&800\\ \hdashline 0 & 3 & 2&0&1&1200\\ \end{array}


zx1x2tsb11/205/20200001/211/204000!2011400\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} z & x_1 & x_2 &t&s&b\\ \hline 1 & -1/2 & 0 &5/2&0&2000\\ \hdashline 0 & 1/2 & 1&1/2&0&400\\ \hdashline 0 & ! 2 & 0&-1&1&400\\ \end{array}


zx1x2tsb1009/4121000013/413000101/21/2200\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} z & x_1 & x_2 &t&s&b\\ \hline 1 & 0 & 0 &9/4&1&2100\\ \hdashline 0 & 0 & 1&3/4&-1&300\\ \hdashline 0 & 1 & 0&-1/2&1/2&200\\ \end{array}


Answer:

x1=200,x2=300,zmax=2100x_1=200,x_2=300,z_{max}=2100


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS