Answer to Question #222595 in Operations Research for HANNA

Question #222595

Problem 4: John, president of Hardrock Concrete Company, has plants in three

locations and is currently working on three major construction projects, located at

different sites. The shipping cost per truckload of concrete, plant capacities, and

project requirements are provided in the following table.


A. Formulate an initial feasible solution to Hardrock’s transportation problem

using the northwest corner rule.

B. Find the optimal solution using stepping-stone method



1
Expert's answer
2021-08-04T08:23:27-0400

Question

John, president of Hardrock Concrete Company, has plants in three

locations and is currently working on three major construction projects, located at

different sites. The shipping cost per truckload of concrete, plant capacities, and

project requirements are provided in the following table.

projectAprojectBprojectCplant capacitiesplant1$10$4$1170plant2$12$5$850plant3$9$7$630Project requirements405060150\begin{matrix} & project A & project B & project C & plant \space capacities \\ plant 1 & \$10 & \$4 & \$ 11 & 70\\ plant 2& \$12 & \$5 & \$ 8 & 50\\ plant 3 & \$9 & \$7 & \$6 & 30\\ Project \space requirements & 40 & 50 & 60 & 150 \end{matrix}

A. Formulate an initial feasible solution to Hardrock’s transportation problem

using the northwest corner rule.

B. Find the optimal solution using stepping-stone method

------------------------------------------------------------------------------------------------------------------------------


Soution

A. Formulate an initial feasible solution to Hardrock’s transportation problem

using the northwest corner rule.


projectAprojectBprojectCplant capacitiesplant11041170plant2125850plant397630Project requirements405060150\begin{matrix} & project A & project B & project C & plant \space capacities \\ plant 1 & 10 & 4 & 11 & 70\\ plant 2& 12 & 5 & 8 & 50\\ plant 3 & 9 & 7 & 6 & 30\\ Project \space requirements & 40 & 50 & 60 & 150 \end{matrix}


(I)The rim values for plant 1=70 and project A=40 are compared.

The smaller of the two i.e. min(70,40) = 40 is assigned to plant 1 project A

This meets the complete demand of project A and leaves 70 - 40=30 units with plant 1.

(II)The rim values for plant1=30 and project B=50 are compared.

The smaller of the two i.e. min(30,50) = 30 is assigned to plant1 project B

This exhausts the capacity of plant1 and leaves 50 - 30=20 units with project B

(III)The rim values for plant2=50 and project B=20 are compared.

The smaller of the two i.e. min(50,20) = 20 is assigned to plant2 project B

This meets the complete demand of project B and leaves 50 - 20=30 units with plant2

(IV)The rim values for plant2=30 and project C=60 are compared.

The smaller of the two i.e. min(30,60) = 30 is assigned to plant2 project C

 This exhausts the capacity of plant2 and leaves 60 - 30=30 units with project C

(V)The rim values for plant3=30 and project C=30 are compared.

The smaller of the two i.e. min(30,30) = 30 is assigned to plant3 project C


Initial feasible solution is

projectAprojectBprojectCplant capacitiesplant110(40)4(30)1170plant2125(20)8(30)50plant3976(30)30Project requirements405060150\begin{matrix} & project A & project B & project C & plant \space capacities \\ plant 1 & 10(40) & 4(30) & 11 & 70\\ plant 2& 12 & 5(20) & 8 (30)& 50\\ plant 3 & 9 & 7 & 6(30) & 30\\ Project \space requirements & 40 & 50 & 60 & 150 \end{matrix}

The minimum total transportation cost =10×40+4×30+5×20+8×30+6×30=1040


Here, the number of allocated cells = 5 is equal to m + n - 1 = 3 + 3 - 1 = 5

∴ This solution is non-degenerate


----------------------------------------------------------------------------------------------------------------------------

B. Find the optimal solution using stepping-stone method

Iteration-1 of optimality test

1. Create closed loop for unoccupied cells, we get

UnoccupiedcellClosedpathNetcostchangeCCBBC114+58=4AABBA125+410=1AACCBBA96+85+410=0ABBCCB76+85=4\begin{matrix} Unoccupied cell & Closed path & Net cost change\\ C & C→ B→ B→ C & 11 - 4 + 5 - 8=4\\ A & A→ B→ B→ A & 12 - 5 + 4 - 10=1\\ A & A→ C→ C→ B→ B→ A & 9 - 6 + 8 - 5 + 4 - 10=0\\A B & B→ C→ C→ B & 7 - 6 + 8 - 5=4\\\end{matrix}



Since all net cost change ≥0


So final optimal solution is arrived.

projectAprojectBprojectCplant capacitiesplant110(40)4(30)1170plant2125(20)8(30)50plant3976(30)30Project requirements405060150\begin{matrix} & project A & project B & project C & plant \space capacities \\ plant 1 & 10(40) & 4(30) & 11 & 70\\ plant 2& 12 & 5(20) & 8 (30)& 50\\ plant 3 & 9 & 7 & 6(30) & 30\\ Project \space requirements & 40 & 50 & 60 & 150 \end{matrix}


The minimum total transportation cost =10×40+4×30+5×20+8×30+6×30=1040


Notice alternate solution is available with unoccupied cell plant 3 project A=0, but with the same optimal value.














Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS