Answer to Question #221324 in Operations Research for Anuj

Question #221324

Establish the initial feasible solutions of the LP model using NCR (North west Corner Rule), MCM ( Minimum Cost Method or Greedy Method), and VAM ( Vogel’s Approximation Method)

 Minimize: C = 14X1A + 25X1B + 13X1C + 18 X1D.+ 10X2A + 12X2B + 13X2C + 11X2D+ 15X3A + 20X3B + 11X3C+ 25X3D

Subject to: X1A + X1B + X1C + X1D = 140  X1A + X2A + X3A = 100

                X2A + X2B + X2C + X2D = 160     X1B + X2B + X3B = 100

               X3A + X3B + X3C + X3D = 50      X1C + X2C + X3C = 50

              X1D + X2D + X3D = 100 Xij    



1
Expert's answer
2021-08-01T09:34:51-0400

The initial tableau for this problem is: 1401605010010050100Using North-west corner method, we locate the upper-most variable(X1A) in the tableau and set it to the min(100,140) = 100 and we cancel out column 11004016050X10050100Repeating the process, we obtain the following tableaus10040X16050X605010010040X10050XX5010010040X60505050XXX10010040X605050X50XXX5010040X605050X50XXXXXTherefore, the solution is feasible, the solution is X1A=100,X1B=40,X2B=60,X2C=50,X2D=50,X3D=50,C=5570We locate the smallest cost(10) at X2A in our initial matrix, we then set the value of X2Ato the min(100,160). Next,we cross out column 1 and reduce S2(160) to 160-100=60. We repeat the process for the remaining uncrossed out rows and columns to obtain the final tableau10040X10060X050XXXXXTherefore, the initial feasible solution is X1B=100,X1D=40,X2A=100,X2D=60,X3B=0,X3C=50,z=5430Next, we use the Vogel’s approximation method to find the basic feasible solution. We compute the penalties by computing the difference between the smallest numbers in eachrow, we select the row with the largest penalty, after which we select the variable with the smallest value.From the table below, column 3 has the largest penalty, we choose X3C since has the smallestcost142513181401413=1101213111601110=115201125501511=410010050100Repeating the process, we obtain the final tableau10040X10060X050XXXXXX1A=100,X1D=40,X2B=100,X2D=60,X3A=0,X3C=50,z=4530\text{The initial tableau for this problem is: }\\\begin{matrix} & &&&140 \\\hline &&&&160\\\hline&&&&50\\\hline100&100&50&100 \end{matrix} \\\text{Using North-west corner method, we locate the upper-most variable$(X_{1A})$ in the }\\\text{tableau and set it to the min(100,140) = 100 and we cancel out column 1} \\\begin{matrix} 100& &&&40 \\\hline &&&&160\\\hline&&&&50\\\hline X&100&50&100 \end{matrix} \\\text{Repeating the process, we obtain the following tableaus} \\\begin{matrix} 100& 40&&&X\\\hline &&&&160\\\hline&&&&50\\\hline X&60&50&100 \end{matrix} \\\begin{matrix} 100& 40&&&X\\\hline &&&&100\\\hline&&&&50\\\hline X&X&50&100 \end{matrix} \\ \\\begin{matrix} 100& 40&&&X\\\hline &60&50&&50\\\hline&&&&50\\\hline X&X&X&100 \end{matrix} \\\begin{matrix} 100& 40&&&X\\\hline &60&50&50&X\\\hline&&&&50\\\hline X&X&X&50 \end{matrix} \\\begin{matrix} 100& 40&&&X\\\hline &60&50&50&X\\\hline&&&50&X\\\hline X&X&X&X \end{matrix} \\\text{Therefore, the solution is feasible, the solution is $X_{1A}=100,X_{1B}=40,X_{2B}=60$,}\\\text{$X_{2C}=50,X_{2D}=50,X_{3D}=50,C=5570$} \\\text{We locate the smallest cost(10) at $X_{2A}$ in our initial matrix, we then set the value of $X_{2A}$}\\\text{to the min(100,160). Next,we cross out column 1 and reduce $S_2$(160) to 160-100=60. We }\\\text{repeat the process for the remaining uncrossed out rows and columns to obtain the final tableau}\\ \\\begin{matrix} & 100&&40&X\\\hline 100 &&&60&X\\\hline&0&50&&X\\\hline X&X&X&X \end{matrix} \\\text{Therefore, the initial feasible solution is }\\X_{1B}=100,X_{1D}=40,X_{2A}=100,X_{2D}=60, X_{3B}=0,X_{3C}=50,z=5430 \\\text{Next, we use the Vogel's approximation method to find the basic feasible solution. We }\\\text{compute the penalties by computing the difference between the smallest numbers in each}\\\text{row, we select the row with the largest penalty, after which we select the variable with }\\\text{the smallest value.}\\\text{From the table below, column 3 has the largest penalty, we choose $X_{3C}$ since has the smallest}\\\text{cost} \\\begin{matrix} 14 & 25&13&18&140 &&&14-13=1 \\\hline 10 &12&13&11&160&&&11-10=1\\\hline15&20&11&25&50&&&15-11=4\\\hline100&100&50&100&&& \end{matrix} \\\text{Repeating the process, we obtain the final tableau} \\\begin{matrix} 100 &&&40&X\\\hline &100&&60&X\\\hline0&&50&&X\\\hline X&X&X&X \end{matrix} \\X_{1A}=100,X_{1D}=40,X_{2B}=100,X_{2D}=60, X_{3A}=0,X_{3C}=50,z=4530


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment