Answer to Question #185367 in Operations Research for Maha

Question #185367

Minimize Z = 0.2x1+ O.lx2 + 0.3x3

Subject to constraint

0. Sx1+ 0.2x2 + 0.7x3 = 0.420

0. 3x1+ 0.2x2 + O.Sx3 ;:::: 0.280

Xv Xz, X3 ;:::: 0.


(i) W1ite second initial basic solution of the p1imal problem using M-Method.


(ii) Solve the dual from optimal Primal table calculated in (i).


1
Expert's answer
2021-04-28T03:40:40-0400

(i) "Minimize\\ \\ Z=0.2x_1+0.1x_2+0.3x_3\\\\"

Subject to constraint

"0. 5x_1+ 0.2x_2 + 0.7x_3 = 0.420\\\\\n\n0. 3x_1+ 0.2x_2 + 0.5x_3 \\geq 0.280\\\\x_1,x_2,x_3\\geq 0"


The problem is converted to canonical form by adding slack, surplus and artificial variables as appropriate


1. As the constraint-1 is of type '=' we should add artificial variable A1


2. As the constraint-2 is of type '≥' we should subtract surplus variable S1 and add artificial variable A2


"\\text{After introducing surplus, artificial variables}\\\\\nMin\\ Z\t=\t\t0.2\tx_1\t+\t0.1\tx_2\t+\t0.3\tx_3\t+\t0\tS_1\t+\tM\tA_1\t+\tM\tA_2\\\\\nsubject \\ to\\\\\n0.5\tx_1\t+\t0.2\tx_2\t+\t0.7\tx_3\t\t\t\t+\t\tA_1\t\t\t\t=\t0.42\\\\\n0.3\tx_1\t+\t0.2\tx_2\t+\t0.5\tx_3\t-\t\tS_1\t\t\t\t+\t\tA_2\t=\t0.28\\\\\nand\\ \\ x_1,x_2,x_3,S_1,A_1,A_2\u22650"





Positive maximum "Z_j-C_j"  is 1.2M-0.3 and its column index is 3. So, the entering variable is x3.


Minimum ratio is 0.56 and its row index is 2. So, the leaving basis variable is A2.


∴ The pivot element is 0.5.


Entering =x3, Departing =A2, Key Element =0.5






Positive maximum Zj-Cj is 1.4M-0.6 and its column index is 4. So, the entering variable is S1.


Minimum ratio is 0.02 and its row index is 1. So, the leaving basis variable is A1.


∴ The pivot element is 1.4.


Entering =S1, Departing =A1, Key Element =1.4





Positive maximum Zj-Cj is 0.0143 and its column index is 1. So, the entering variable is x1.


Minimum ratio is 0.35 and its row index is 1. So, the leaving basis variable is S1.


∴ The pivot element is 0.0571.


Entering =x1, Departing =S1, Key Element =0.0571





Since all Zj-Cj≤0


Hence, optimal solution is arrived with value of variables as :

x1=0.35,x2=0,x3=0.35


Min Z=0.175



(ii) Dual is :

"Max\\ Z\t=\t\t0.42\ty _1\t+\t0.28\ty_2\\\\\n\nsubject\\ to\\ \\\\\n0.5\ty _1\t+\t0.3\ty_2\t\u2264\t0.2\\\\\n0.2\ty_1\t+\t0.2\ty_2\t\u2264\t0.1\\\\\n0.7\ty_1\t+\t0.5\ty_2\t\u2264\t0.3\\\\\\\\\n\nand\\ y _2\u22650;\\ y _1\\ \\ \\ \\text{ unrestricted in sign}\\\\\n\n\nSince \\ y _1 \\ is \\ unrestricted\\ in\\ sign, introduce\\ the\\ non-negative\\ variables\\ y_1\u2032,y_1\u2032\u2032\\\\\n\nso \\ that\\ y_1=y_1\u2032-y_1\u2032\u2032;\\ y_1\u2032,y_1\u2032\u2032\u22650."


The standard form of the LP problem becomes

"Max\\ Z\t=\t\t0.42\ty _1\u2032\t-\t0.42\ty_1\u2032\u2032\t+\t0.28\ty_2\\\\\nsubject\\ to\\\\\n0.5\ty_1\u2032\t-\t0.5\ty_1\u2032\u2032\t+\t0.3\ty_2\t\u2264\t0.2\\\\\n0.2\ty_1\u2032\t-\t0.2\ty_1\u2032\u2032\t+\t0.2\ty_2\t\u2264\t0.1\\\\\n0.7\ty_1\u2032\t-\t0.7\ty_1\u2032\u2032\t+\t0.5\ty_2\t\u2264\t0.3\\\\\nand \\ \\ y_1\u2032,y_1\u2032\u2032,y_2\u22650;"


The problem is converted to canonical form by adding slack, surplus and artificial variables as appropriate


1. As the constraint-1 is of type '≤' we should add slack variable S1


2. As the constraint-2 is of type '≤' we should add slack variable S2


3. As the constraint-3 is of type '≤' we should add slack variable S3



After introducing slack variables

"Max \\ Z\t=\t\t0.42\ty_1\u2032\t-\t0.42\ty_1\u2032\u2032\t+\t0.28\ty_2\t+\t0\tS_1\t+\t0\tS_2\t+\t0\tS_3\\\\\nsubject\\ to\\\\\n0.5\ty_1\u2032\t-\t0.5\ty_1\u2032\u2032\t+\t0.3\ty_2\t+\t\tS_1\t\t\t\t\t\t\t=\t0.2\\\\\n0.2\ty_1\u2032\t-\t0.2\ty_1\u2032\u2032\t+\t0.2\ty_2\t\t\t\t+\t\tS_2\t\t\t\t=\t0.1\\\\\n0.7\ty_1\u2032\t-\t0.7\ty_1\u2032\u2032\t+\t0.5\ty_2\t\t\t\t\t\t\t+\t\tS_3\t=\t0.3\\\\\nand\\ \\ y_1\u2032,y_1\u2032\u2032,y_2,S_1,S_2,S_3\u22650"




Negative minimum Zj-Cj is -0.42 and its column index is 1. So, the entering variable is y1′.


Minimum ratio is 0.4 and its row index is 1. So, the leaving basis variable is S1.


∴ The pivot element is 0.5.


Entering =y1′, Departing =S1, Key Element =0.5





Negative minimum Zj-Cj is -0.028 and its column index is 3. So, the entering variable is y2.


 Minimum ratio is 0.25 and its row index is 2. So, the leaving basis variable is S2.


∴ The pivot element is 0.08.


Entering = y2, Departing =S2, Key Element =0.08




Since all "Z_j-C_j\u22650"


Hence, optimal solution is arrived with value of variables as :

"y_1\u2032=0.25,y_1\u2032\u2032=0,y_2=0.25"


Max Z=0.175



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS