Use dual simplex method to solve the following LPP .
Min z = x1 + 2x2 + 3x3
Subject to
x1 - x2 + x3 ≥ 4
x1 + x2 + 2x3 ≤ 8
x1 - x3 ≥ 2
x1, x2, x3 ≥ 0 .
Iteration 1BCbPx1x2x3x4x5x6x7x8x9Q4−82000000x7011−111001001x801−1−10010010−1x9011−2−10010011max0−48−2000000\def\arraystretch{1.0} \begin{array}{c:c:c:c:c:c:c:c:c:c:c:c:c} B& Cb &P&x_1&x_2&x_3&x_4&x_5&x_6&x_7&x_8&x_9&Q \\ \hline & & & 4 &-8&2&0&0&0&0&0&0 \\ \hdashline x_7 & 0 & 1&1&-1&1&1&0&0&1&0&0&1 \\ \hdashline x_8&0&1&-1&-1&0&0&1&0&0&1&0&-1 \\ \hdashline x_9&0&1&1&-2&-1&0&0&1&0&0&1&1 \\ \hdashline max&&0&-4&8&-2&0&0&0&0&0&0& \end{array}Bx7x8x9maxCb000P1110x141−11−4x2−8−1−1−28x3210−1−2x401000x500100x600010x701000x800100x900010Q1−11
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments