Consider A = <0,4,2> , B = <6,-1,0> , and C = <3,0,1>. Find scalars a, b and c such that aA + bB = (c - 1)C.
.
A=[042],B=[6−10],C=[301]A = \begin{bmatrix} 0\\ 4\\ 2 \end{bmatrix}, B = \begin{bmatrix} 6\\ -1\\ 0 \end{bmatrix}, C = \begin{bmatrix} 3\\ 0\\ 1 \end{bmatrix}A=⎣⎡042⎦⎤,B=⎣⎡6−10⎦⎤,C=⎣⎡301⎦⎤
aA+bB=(c−1)CaA +bB = (c-1)CaA+bB=(c−1)C
a,b,c−?a,b,c - ?a,b,c−?
a[042]+b[6−10]=(c−1)[301]a\begin{bmatrix} 0\\ 4\\ 2 \end{bmatrix} + b \begin{bmatrix} 6\\ -1\\ 0 \end{bmatrix} = (c-1) \begin{bmatrix} 3\\ 0\\ 1 \end{bmatrix}a⎣⎡042⎦⎤+b⎣⎡6−10⎦⎤=(c−1)⎣⎡301⎦⎤
{6b=3c−34a−b=02a=c−1\begin{cases} 6b = 3c-3 \\ 4a-b = 0\\ 2a = c-1 \end{cases}⎩⎨⎧6b=3c−34a−b=02a=c−1 {2b=c−14a=b2a=c−1\begin{cases} 2b = c-1\\ 4a = b\\ 2a = c-1 \end{cases}⎩⎨⎧2b=c−14a=b2a=c−1
From (1) and (3) 2a=2b→a=b2a = 2b \rightarrow a = b2a=2b→a=b
From (2) 4a=a→3a=0→a=0→b=04a = a \rightarrow 3a = 0 \rightarrow a =0 \rightarrow b = 04a=a→3a=0→a=0→b=0
From (3) c−1=2a→c−1=0→c=1c-1 = 2a \rightarrow c-1 = 0 \rightarrow c =1c−1=2a→c−1=0→c=1
Answer: a=0,b=0,c=1a = 0, b = 0, c = 1a=0,b=0,c=1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments