A = [ 0 4 2 ] , B = [ 6 − 1 0 ] , C = [ 3 0 1 ] A =
\begin{bmatrix}
0\\
4\\
2
\end{bmatrix},
B = \begin{bmatrix}
6\\
-1\\
0
\end{bmatrix},
C =
\begin{bmatrix}
3\\
0\\
1
\end{bmatrix} A = ⎣ ⎡ 0 4 2 ⎦ ⎤ , B = ⎣ ⎡ 6 − 1 0 ⎦ ⎤ , C = ⎣ ⎡ 3 0 1 ⎦ ⎤
a A + b B = ( c − 1 ) C aA +bB = (c-1)C a A + b B = ( c − 1 ) C
a , b , c − ? a,b,c - ? a , b , c − ?
a [ 0 4 2 ] + b [ 6 − 1 0 ] = ( c − 1 ) [ 3 0 1 ] a\begin{bmatrix}
0\\
4\\
2
\end{bmatrix}
+
b \begin{bmatrix}
6\\
-1\\
0
\end{bmatrix}
= (c-1) \begin{bmatrix}
3\\
0\\
1
\end{bmatrix} a ⎣ ⎡ 0 4 2 ⎦ ⎤ + b ⎣ ⎡ 6 − 1 0 ⎦ ⎤ = ( c − 1 ) ⎣ ⎡ 3 0 1 ⎦ ⎤
{ 6 b = 3 c − 3 4 a − b = 0 2 a = c − 1 \begin{cases}
6b = 3c-3 \\
4a-b = 0\\
2a = c-1
\end{cases} ⎩ ⎨ ⎧ 6 b = 3 c − 3 4 a − b = 0 2 a = c − 1 { 2 b = c − 1 4 a = b 2 a = c − 1 \begin{cases}
2b = c-1\\
4a = b\\
2a = c-1
\end{cases} ⎩ ⎨ ⎧ 2 b = c − 1 4 a = b 2 a = c − 1
From (1) and (3) 2 a = 2 b → a = b 2a = 2b \rightarrow a = b 2 a = 2 b → a = b
From (2) 4 a = a → 3 a = 0 → a = 0 → b = 0 4a = a \rightarrow 3a = 0 \rightarrow a =0 \rightarrow b = 0 4 a = a → 3 a = 0 → a = 0 → b = 0
From (3) c − 1 = 2 a → c − 1 = 0 → c = 1 c-1 = 2a \rightarrow c-1 = 0 \rightarrow c =1 c − 1 = 2 a → c − 1 = 0 → c = 1
Answer: a = 0 , b = 0 , c = 1 a = 0, b = 0, c = 1 a = 0 , b = 0 , c = 1
Comments