Question #332520

Consider A = <0,4,2> , B = <6,-1,0> , and C = <3,0,1>. Find scalars a, b and c such that aA + bB = (c - 1)C.


.



1
Expert's answer
2022-04-25T13:36:09-0400

A=[042],B=[610],C=[301]A = \begin{bmatrix} 0\\ 4\\ 2 \end{bmatrix}, B = \begin{bmatrix} 6\\ -1\\ 0 \end{bmatrix}, C = \begin{bmatrix} 3\\ 0\\ 1 \end{bmatrix}

aA+bB=(c1)CaA +bB = (c-1)C

a,b,c?a,b,c - ?

a[042]+b[610]=(c1)[301]a\begin{bmatrix} 0\\ 4\\ 2 \end{bmatrix} + b \begin{bmatrix} 6\\ -1\\ 0 \end{bmatrix} = (c-1) \begin{bmatrix} 3\\ 0\\ 1 \end{bmatrix}


{6b=3c34ab=02a=c1\begin{cases} 6b = 3c-3 \\ 4a-b = 0\\ 2a = c-1 \end{cases} {2b=c14a=b2a=c1\begin{cases} 2b = c-1\\ 4a = b\\ 2a = c-1 \end{cases}

From (1) and (3) 2a=2ba=b2a = 2b \rightarrow a = b

From (2) 4a=a3a=0a=0b=04a = a \rightarrow 3a = 0 \rightarrow a =0 \rightarrow b = 0

From (3) c1=2ac1=0c=1c-1 = 2a \rightarrow c-1 = 0 \rightarrow c =1

Answer: a=0,b=0,c=1a = 0, b = 0, c = 1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS