Define W =
x
y
: xy ≥ 0
. Decide if V is a vector space or notand prove
your claim. (Hint: V is the union of the first and third quadrants in the xyplane)
(1,2),(−2,−1)∈V(1,2)+(−2,−1)=(−1,1)∉VNot a vector space\left( 1,2 \right) ,\left( -2,-1 \right) \in V\\\left( 1,2 \right) +\left( -2,-1 \right) =\left( -1,1 \right) \notin V\\Not\,\,a\,\,vector\,\,space(1,2),(−2,−1)∈V(1,2)+(−2,−1)=(−1,1)∈/VNotavectorspace
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments