1.1 Prove that the characteristic polynomial of a 2 × 2 matrix A can be expressed as
λ^2 − tr(A)λ + det(A), where tr(A) is the trace of A.
Let A=(abcd)A=\begin{pmatrix} a&b\\c&d \end{pmatrix}A=(acbd) . Then det(A)=ad−bc\det (A)=ad-bcdet(A)=ad−bc and tr(A)=a+d\text{tr}(A)=a+dtr(A)=a+d .
The characteristic polynomial: det(A−λI)=∣a−λbcd−λ∣=(a−λ)(d−λ)−bc=λ2−(a+d)λ+ad−bc=λ2−tr(A)λ+det(A)\det(A-\lambda I)=\begin{vmatrix}a-\lambda &b\\c&d-\lambda \end{vmatrix}=(a-\lambda)(d-\lambda )-bc=\lambda^2-(a+d)\lambda +ad-bc=\lambda^2-\text{tr}(A)\lambda +\det(A)det(A−λI)=∣∣a−λcbd−λ∣∣=(a−λ)(d−λ)−bc=λ2−(a+d)λ+ad−bc=λ2−tr(A)λ+det(A)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment