1.1 Prove that the characteristic polynomial of a 2 × 2 matrix A can be expressed as
λ^2 − tr(A)λ + det(A), where tr(A) is the trace of A.
Let "A=\\begin{pmatrix} a&b\\\\c&d \\end{pmatrix}" . Then "\\det (A)=ad-bc" and "\\text{tr}(A)=a+d" .
The characteristic polynomial: "\\det(A-\\lambda I)=\\begin{vmatrix}a-\\lambda &b\\\\c&d-\\lambda\n\\end{vmatrix}=(a-\\lambda)(d-\\lambda )-bc=\\lambda^2-(a+d)\\lambda +ad-bc=\\lambda^2-\\text{tr}(A)\\lambda +\\det(A)"
Comments
Leave a comment