The vectors V1 - (1, 1, 2, 4), V2 - (2, - I , -5 , 2), V3 = (1, -1 , -4 , 0) and
V4 = (2, 1, 1 ,6 ) are linearly independent. Is it true ? Justify your answer
Let "A =\\begin{pmatrix}\n 1 & 1 & 2 & 4\\\\\n 2 & -1 & -5 & 2\\\\\n 1 & -1 & -4 & 0\\\\\n 2 & 1 & 1 & 6\n\\end{pmatrix}"
"\\begin{pmatrix}\n 1 & 1 & 2 & 4\\\\\n 2 & -1 & -5 & 2\\\\\n 1 & -1 & -4 & 0\\\\\n 2 & 1 & 1 & 6\n\\end{pmatrix}" ~ "[V_2 -2V_1, V_3 - V_1, V_4 - 2V_1]" ~"\\begin{pmatrix}\n 1 & 1 & 2 & 4\\\\\n 0 & -3 & -9 & -6\\\\\n0 & -2 & -6 & -4 \\\\\n0 & 0 & -1 & -2\n\\end{pmatrix}" ~
~"[V_3 - \\cfrac{2}{3}V_2]" ~ "\\begin{pmatrix}\n 1 & 1 & 2 & 4\\\\\n 0 & -3 & -9 & -6\\\\\n0 & 0&0&0\\\\\n0&0&-1&-2\n\\end{pmatrix}"
So we can see "rank \\ A = 3 < 4"
Hence the vectors are linearly dependent
Comments
Leave a comment