Answer to Question #328776 in Linear Algebra for Aarya

Question #328776

The vectors V1 - (1, 1, 2, 4), V2 - (2, - I , -5 , 2), V3 = (1, -1 , -4 , 0) and

V4 = (2, 1, 1 ,6 ) are linearly independent. Is it true ? Justify your answer


1
Expert's answer
2022-04-15T11:06:18-0400

Let A=(1124215211402116)A =\begin{pmatrix} 1 & 1 & 2 & 4\\ 2 & -1 & -5 & 2\\ 1 & -1 & -4 & 0\\ 2 & 1 & 1 & 6 \end{pmatrix}

(1124215211402116)\begin{pmatrix} 1 & 1 & 2 & 4\\ 2 & -1 & -5 & 2\\ 1 & -1 & -4 & 0\\ 2 & 1 & 1 & 6 \end{pmatrix} ~ [V22V1,V3V1,V42V1][V_2 -2V_1, V_3 - V_1, V_4 - 2V_1] ~(1124039602640012)\begin{pmatrix} 1 & 1 & 2 & 4\\ 0 & -3 & -9 & -6\\ 0 & -2 & -6 & -4 \\ 0 & 0 & -1 & -2 \end{pmatrix} ~

~[V323V2][V_3 - \cfrac{2}{3}V_2] ~ (1124039600000012)\begin{pmatrix} 1 & 1 & 2 & 4\\ 0 & -3 & -9 & -6\\ 0 & 0&0&0\\ 0&0&-1&-2 \end{pmatrix}

So we can see rank A=3<4rank \ A = 3 < 4

Hence the vectors are linearly dependent


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment