A = [ 4 0 1 − 2 1 0 − 2 0 1 ] A = \begin{bmatrix} 4 & 0 & 1 \\ −2 & 1 & 0 \\ −2 & 0 & 1 \end{bmatrix} A = ⎣ ⎡ 4 − 2 − 2 0 1 0 1 0 1 ⎦ ⎤
3.1. The characteristic polynomial of this matrix is
P A ( λ ) = det ( A − λ I ) = ∣ 4 − λ 0 1 − 2 1 − λ 0 − 2 0 1 − λ ∣ = P_{A}(\lambda)=\det (A-\lambda I) =\begin{vmatrix} 4-\lambda & 0 & 1 \\ −2 & 1-\lambda & 0 \\ −2 & 0 & 1-\lambda \end{vmatrix}= P A ( λ ) = det ( A − λ I ) = ∣ ∣ 4 − λ − 2 − 2 0 1 − λ 0 1 0 1 − λ ∣ ∣ =
( 1 − λ ) ∣ 4 − λ 1 − 2 1 − λ ∣ = ( 1 − λ ) ( λ 2 − 5 λ + 6 ) = (1-\lambda)\begin{vmatrix} 4-\lambda & 1 \\−2 & 1-\lambda \end{vmatrix}=(1-\lambda)(\lambda^2-5\lambda+6)= ( 1 − λ ) ∣ ∣ 4 − λ − 2 1 1 − λ ∣ ∣ = ( 1 − λ ) ( λ 2 − 5 λ + 6 ) =
= ( 1 − λ ) ( λ − 2 ) ( λ − 3 ) =(1-\lambda)(\lambda-2)(\lambda-3) = ( 1 − λ ) ( λ − 2 ) ( λ − 3 )
The eigenvalues of A A A are the roots of the polynomial P A ( λ ) P_A(\lambda) P A ( λ ) :
λ 1 = 1 \lambda_1=1 λ 1 = 1 , λ 2 = 2 \lambda_2=2 λ 2 = 2 , λ 3 = 3 \lambda_3=3 λ 3 = 3 .
3.2. The eigenvector X 1 X_1 X 1 corresponding to the eigenvalue λ 1 = 1 \lambda_1=1 λ 1 = 1 is the solution to the equation ( A − λ 1 I ) X = 0 (A-\lambda_1I)X=0 ( A − λ 1 I ) X = 0 .
[ 3 0 1 − 2 0 0 − 2 0 0 ] [ x 1 x 2 x 3 ] = [ 3 x 1 + x 3 − 2 x 1 − 2 x 1 ] = [ 0 0 0 ] \begin{bmatrix} 3 & 0 & 1 \\ −2 & 0 & 0 \\ −2 & 0 & 0 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}=\begin{bmatrix} 3x_1+x_3 \\-2 x_1 \\ -2 x_1 \end{bmatrix}=\begin{bmatrix} 0 \\0 \\0 \end{bmatrix} ⎣ ⎡ 3 − 2 − 2 0 0 0 1 0 0 ⎦ ⎤ ⎣ ⎡ x 1 x 2 x 3 ⎦ ⎤ = ⎣ ⎡ 3 x 1 + x 3 − 2 x 1 − 2 x 1 ⎦ ⎤ = ⎣ ⎡ 0 0 0 ⎦ ⎤
which implies x 1 = 0 x_1=0 x 1 = 0 , x 3 = 0 x_3=0 x 3 = 0 , and hence, X 1 = [ 0 1 0 ] X_1=\begin{bmatrix} 0 \\1 \\0 \end{bmatrix} X 1 = ⎣ ⎡ 0 1 0 ⎦ ⎤ .
The eigenvector X 2 X_2 X 2 corresponding to the eigenvalue λ 2 = 2 \lambda_2=2 λ 2 = 2 is the solution to the equation ( A − λ 2 I ) X = 0 (A-\lambda_2I)X=0 ( A − λ 2 I ) X = 0 .
[ 2 0 1 − 2 − 1 0 − 2 0 − 1 ] [ x 1 x 2 x 3 ] = [ 2 x 1 + x 3 − 2 x 1 − x 2 − 2 x 1 − x 3 ] = [ 0 0 0 ] \begin{bmatrix} 2 & 0 & 1 \\ −2 & -1 & 0 \\ −2 & 0 & -1 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}=\begin{bmatrix} 2x_1+x_3 \\-2 x_1-x_2 \\ -2x_1-x_3 \end{bmatrix}=\begin{bmatrix} 0 \\0 \\0 \end{bmatrix} ⎣ ⎡ 2 − 2 − 2 0 − 1 0 1 0 − 1 ⎦ ⎤ ⎣ ⎡ x 1 x 2 x 3 ⎦ ⎤ = ⎣ ⎡ 2 x 1 + x 3 − 2 x 1 − x 2 − 2 x 1 − x 3 ⎦ ⎤ = ⎣ ⎡ 0 0 0 ⎦ ⎤
which implies x 1 = t x_1=t x 1 = t , x 2 = − 2 t x_2=-2t x 2 = − 2 t , x 3 = − 2 t x_3=-2t x 3 = − 2 t , and hence, X 2 = [ 1 − 2 − 2 ] X_2=\begin{bmatrix} 1 \\-2 \\-2 \end{bmatrix} X 2 = ⎣ ⎡ 1 − 2 − 2 ⎦ ⎤ .
The eigenvector X 3 X_3 X 3 corresponding to the eigenvalue λ 3 = 3 \lambda_3=3 λ 3 = 3 is the solution to the equation ( A − λ 3 I ) X = 0 (A-\lambda_3I)X=0 ( A − λ 3 I ) X = 0 .
[ 1 0 1 − 2 − 2 0 − 2 0 − 2 ] [ x 1 x 2 x 3 ] = [ x 1 + x 3 − 2 x 1 − 2 x 2 − 2 x 1 − 2 x 3 ] = [ 0 0 0 ] \begin{bmatrix} 1 & 0 & 1 \\ −2 & -2 & 0 \\ −2 & 0 & -2 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}=\begin{bmatrix} x_1+x_3 \\-2 x_1-2x_2 \\ -2x_1-2x_3 \end{bmatrix}=\begin{bmatrix} 0 \\0 \\0 \end{bmatrix} ⎣ ⎡ 1 − 2 − 2 0 − 2 0 1 0 − 2 ⎦ ⎤ ⎣ ⎡ x 1 x 2 x 3 ⎦ ⎤ = ⎣ ⎡ x 1 + x 3 − 2 x 1 − 2 x 2 − 2 x 1 − 2 x 3 ⎦ ⎤ = ⎣ ⎡ 0 0 0 ⎦ ⎤
which implies x 1 = t x_1=t x 1 = t , x 2 = − t x_2=-t x 2 = − t , x 3 = − t x_3=-t x 3 = − t , and hence, X 3 = [ 1 − 1 − 1 ] X_3=\begin{bmatrix} 1 \\-1 \\-1 \end{bmatrix} X 3 = ⎣ ⎡ 1 − 1 − 1 ⎦ ⎤ .
3.3. Consider the matrix P = ( X 1 ∣ X 2 ∣ X 3 ) P=(X_1 | X_2|X_3) P = ( X 1 ∣ X 2 ∣ X 3 ) (i.e. X 1 , X 2 , X 3 X_1, X_2 ,X_3 X 1 , X 2 , X 3 are the columns of this matrix).
Then
A P = ( A X 1 ∣ A X 2 ∣ A X 3 ) = ( λ 1 X 1 ∣ λ 2 X 2 ∣ λ 3 X 3 ) = P D AP=(AX_1|AX_2|AX_3)=(\lambda_1X_1|\lambda_2X_2|\lambda_3X_3)=PD A P = ( A X 1 ∣ A X 2 ∣ A X 3 ) = ( λ 1 X 1 ∣ λ 2 X 2 ∣ λ 3 X 3 ) = P D , where
D = [ λ 1 0 0 0 λ 2 0 0 0 λ 3 ] = [ 1 0 0 0 2 0 0 0 3 ] D=\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} D = ⎣ ⎡ λ 1 0 0 0 λ 2 0 0 0 λ 3 ⎦ ⎤ = ⎣ ⎡ 1 0 0 0 2 0 0 0 3 ⎦ ⎤ is a diagonal matrix.
Therefore, D = P − 1 A P D=P^{-1}AP D = P − 1 A P , which means that the matrix A A A is diagonalizable.
Answer . The eigenvalues of A A A are λ 1 = 1 \lambda_1=1 λ 1 = 1 , λ 2 = 2 \lambda_2=2 λ 2 = 2 , λ 3 = 3 \lambda_3=3 λ 3 = 3 .
The eigenvalues of A A A are X 1 = [ 0 1 0 ] X_1=\begin{bmatrix} 0 \\1 \\0 \end{bmatrix} X 1 = ⎣ ⎡ 0 1 0 ⎦ ⎤ , X 2 = [ 1 − 2 − 2 ] X_2=\begin{bmatrix} 1 \\-2 \\-2 \end{bmatrix} X 2 = ⎣ ⎡ 1 − 2 − 2 ⎦ ⎤ , X 3 = [ 1 − 1 − 1 ] X_3=\begin{bmatrix} 1 \\-1 \\-1 \end{bmatrix} X 3 = ⎣ ⎡ 1 − 1 − 1 ⎦ ⎤ .
The matrix P P P equals to ( X 1 ∣ X 2 ∣ X 3 ) = [ 0 1 1 1 − 2 − 1 0 − 2 − 1 ] (X_1 | X_2|X_3)=\begin{bmatrix} 0 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & -2 & -1 \end{bmatrix} ( X 1 ∣ X 2 ∣ X 3 ) = ⎣ ⎡ 0 1 0 1 − 2 − 2 1 − 1 − 1 ⎦ ⎤ .
Comments