Question #328759

QUESTION 3 Let A = [ 4 0 1 βˆ’2 1 0 βˆ’2 0 1 ](its 3by3 matrix).

3.1. Find the eigenvalues of A.

3.2. For each eigenvalue of A find the corresponding eigenvectors.


3.3. Is A diagonalizable? Explain. If it is diagonalizable, then find P such that 𝐷 = 𝑃 βˆ’1𝐴𝑃 is a diagonal matrix. Do not compute 𝑃 βˆ’1(show all step!) . 


1
Expert's answer
2022-04-15T11:28:28-0400

A=[401βˆ’210βˆ’201]A = \begin{bmatrix} 4 & 0 & 1 \\ βˆ’2 & 1 & 0 \\ βˆ’2 & 0 & 1 \end{bmatrix}

3.1. The characteristic polynomial of this matrix is

PA(Ξ»)=det⁑(Aβˆ’Ξ»I)=∣4βˆ’Ξ»01βˆ’21βˆ’Ξ»0βˆ’201βˆ’Ξ»βˆ£=P_{A}(\lambda)=\det (A-\lambda I) =\begin{vmatrix} 4-\lambda & 0 & 1 \\ βˆ’2 & 1-\lambda & 0 \\ βˆ’2 & 0 & 1-\lambda \end{vmatrix}=

(1βˆ’Ξ»)∣4βˆ’Ξ»1βˆ’21βˆ’Ξ»βˆ£=(1βˆ’Ξ»)(Ξ»2βˆ’5Ξ»+6)=(1-\lambda)\begin{vmatrix} 4-\lambda & 1 \\βˆ’2 & 1-\lambda \end{vmatrix}=(1-\lambda)(\lambda^2-5\lambda+6)=

=(1βˆ’Ξ»)(Ξ»βˆ’2)(Ξ»βˆ’3)=(1-\lambda)(\lambda-2)(\lambda-3)

The eigenvalues of AA are the roots of the polynomial PA(Ξ»)P_A(\lambda):

Ξ»1=1\lambda_1=1, Ξ»2=2\lambda_2=2, Ξ»3=3\lambda_3=3.


3.2. The eigenvector X1X_1 corresponding to the eigenvalue Ξ»1=1\lambda_1=1 is the solution to the equation (Aβˆ’Ξ»1I)X=0(A-\lambda_1I)X=0.

[301βˆ’200βˆ’200][x1x2x3]=[3x1+x3βˆ’2x1βˆ’2x1]=[000]\begin{bmatrix} 3 & 0 & 1 \\ βˆ’2 & 0 & 0 \\ βˆ’2 & 0 & 0 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}=\begin{bmatrix} 3x_1+x_3 \\-2 x_1 \\ -2 x_1 \end{bmatrix}=\begin{bmatrix} 0 \\0 \\0 \end{bmatrix}

which implies x1=0x_1=0, x3=0x_3=0, and hence, X1=[010]X_1=\begin{bmatrix} 0 \\1 \\0 \end{bmatrix}.

The eigenvector X2X_2 corresponding to the eigenvalue Ξ»2=2\lambda_2=2 is the solution to the equation (Aβˆ’Ξ»2I)X=0(A-\lambda_2I)X=0.

[201βˆ’2βˆ’10βˆ’20βˆ’1][x1x2x3]=[2x1+x3βˆ’2x1βˆ’x2βˆ’2x1βˆ’x3]=[000]\begin{bmatrix} 2 & 0 & 1 \\ βˆ’2 & -1 & 0 \\ βˆ’2 & 0 & -1 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}=\begin{bmatrix} 2x_1+x_3 \\-2 x_1-x_2 \\ -2x_1-x_3 \end{bmatrix}=\begin{bmatrix} 0 \\0 \\0 \end{bmatrix}

which implies x1=tx_1=t, x2=βˆ’2tx_2=-2t, x3=βˆ’2tx_3=-2t, and hence, X2=[1βˆ’2βˆ’2]X_2=\begin{bmatrix} 1 \\-2 \\-2 \end{bmatrix}.

The eigenvector X3X_3 corresponding to the eigenvalue Ξ»3=3\lambda_3=3 is the solution to the equation (Aβˆ’Ξ»3I)X=0(A-\lambda_3I)X=0.

[101βˆ’2βˆ’20βˆ’20βˆ’2][x1x2x3]=[x1+x3βˆ’2x1βˆ’2x2βˆ’2x1βˆ’2x3]=[000]\begin{bmatrix} 1 & 0 & 1 \\ βˆ’2 & -2 & 0 \\ βˆ’2 & 0 & -2 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}=\begin{bmatrix} x_1+x_3 \\-2 x_1-2x_2 \\ -2x_1-2x_3 \end{bmatrix}=\begin{bmatrix} 0 \\0 \\0 \end{bmatrix}

which implies x1=tx_1=t, x2=βˆ’tx_2=-t, x3=βˆ’tx_3=-t, and hence, X3=[1βˆ’1βˆ’1]X_3=\begin{bmatrix} 1 \\-1 \\-1 \end{bmatrix}.


3.3. Consider the matrix P=(X1∣X2∣X3)P=(X_1 | X_2|X_3) (i.e. X1,X2,X3X_1, X_2 ,X_3 are the columns of this matrix).

Then

AP=(AX1∣AX2∣AX3)=(λ1X1∣λ2X2∣λ3X3)=PDAP=(AX_1|AX_2|AX_3)=(\lambda_1X_1|\lambda_2X_2|\lambda_3X_3)=PD, where

D=[Ξ»1000Ξ»2000Ξ»3]=[100020003]D=\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} is a diagonal matrix.

Therefore, D=Pβˆ’1APD=P^{-1}AP, which means that the matrix AA is diagonalizable.


Answer. The eigenvalues of AA are Ξ»1=1\lambda_1=1, Ξ»2=2\lambda_2=2, Ξ»3=3\lambda_3=3.

The eigenvalues of AA are X1=[010]X_1=\begin{bmatrix} 0 \\1 \\0 \end{bmatrix} , X2=[1βˆ’2βˆ’2]X_2=\begin{bmatrix} 1 \\-2 \\-2 \end{bmatrix}, X3=[1βˆ’1βˆ’1]X_3=\begin{bmatrix} 1 \\-1 \\-1 \end{bmatrix}.

The matrix PP equals to (X1∣X2∣X3)=[0111βˆ’2βˆ’10βˆ’2βˆ’1](X_1 | X_2|X_3)=\begin{bmatrix} 0 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & -2 & -1 \end{bmatrix}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS