A = [ 4 0 1 β 2 1 0 β 2 0 1 ] A = \begin{bmatrix} 4 & 0 & 1 \\ β2 & 1 & 0 \\ β2 & 0 & 1 \end{bmatrix} A = β£ β‘ β 4 β 2 β 2 β 0 1 0 β 1 0 1 β β¦ β€ β
3.1. The characteristic polynomial of this matrix is
P A ( Ξ» ) = det β‘ ( A β Ξ» I ) = β£ 4 β Ξ» 0 1 β 2 1 β Ξ» 0 β 2 0 1 β Ξ» β£ = P_{A}(\lambda)=\det (A-\lambda I) =\begin{vmatrix} 4-\lambda & 0 & 1 \\ β2 & 1-\lambda & 0 \\ β2 & 0 & 1-\lambda \end{vmatrix}= P A β ( Ξ» ) = det ( A β Ξ» I ) = β£ β£ β 4 β Ξ» β 2 β 2 β 0 1 β Ξ» 0 β 1 0 1 β Ξ» β β£ β£ β =
( 1 β Ξ» ) β£ 4 β Ξ» 1 β 2 1 β Ξ» β£ = ( 1 β Ξ» ) ( Ξ» 2 β 5 Ξ» + 6 ) = (1-\lambda)\begin{vmatrix} 4-\lambda & 1 \\β2 & 1-\lambda \end{vmatrix}=(1-\lambda)(\lambda^2-5\lambda+6)= ( 1 β Ξ» ) β£ β£ β 4 β Ξ» β 2 β 1 1 β Ξ» β β£ β£ β = ( 1 β Ξ» ) ( Ξ» 2 β 5 Ξ» + 6 ) =
= ( 1 β Ξ» ) ( Ξ» β 2 ) ( Ξ» β 3 ) =(1-\lambda)(\lambda-2)(\lambda-3) = ( 1 β Ξ» ) ( Ξ» β 2 ) ( Ξ» β 3 )
The eigenvalues of A A A are the roots of the polynomial P A ( Ξ» ) P_A(\lambda) P A β ( Ξ» ) :
Ξ» 1 = 1 \lambda_1=1 Ξ» 1 β = 1 , Ξ» 2 = 2 \lambda_2=2 Ξ» 2 β = 2 , Ξ» 3 = 3 \lambda_3=3 Ξ» 3 β = 3 .
3.2. The eigenvector X 1 X_1 X 1 β corresponding to the eigenvalue Ξ» 1 = 1 \lambda_1=1 Ξ» 1 β = 1 is the solution to the equation ( A β Ξ» 1 I ) X = 0 (A-\lambda_1I)X=0 ( A β Ξ» 1 β I ) X = 0 .
[ 3 0 1 β 2 0 0 β 2 0 0 ] [ x 1 x 2 x 3 ] = [ 3 x 1 + x 3 β 2 x 1 β 2 x 1 ] = [ 0 0 0 ] \begin{bmatrix} 3 & 0 & 1 \\ β2 & 0 & 0 \\ β2 & 0 & 0 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}=\begin{bmatrix} 3x_1+x_3 \\-2 x_1 \\ -2 x_1 \end{bmatrix}=\begin{bmatrix} 0 \\0 \\0 \end{bmatrix} β£ β‘ β 3 β 2 β 2 β 0 0 0 β 1 0 0 β β¦ β€ β β£ β‘ β x 1 β x 2 β x 3 β β β¦ β€ β = β£ β‘ β 3 x 1 β + x 3 β β 2 x 1 β β 2 x 1 β β β¦ β€ β = β£ β‘ β 0 0 0 β β¦ β€ β
which implies x 1 = 0 x_1=0 x 1 β = 0 , x 3 = 0 x_3=0 x 3 β = 0 , and hence, X 1 = [ 0 1 0 ] X_1=\begin{bmatrix} 0 \\1 \\0 \end{bmatrix} X 1 β = β£ β‘ β 0 1 0 β β¦ β€ β .
The eigenvector X 2 X_2 X 2 β corresponding to the eigenvalue Ξ» 2 = 2 \lambda_2=2 Ξ» 2 β = 2 is the solution to the equation ( A β Ξ» 2 I ) X = 0 (A-\lambda_2I)X=0 ( A β Ξ» 2 β I ) X = 0 .
[ 2 0 1 β 2 β 1 0 β 2 0 β 1 ] [ x 1 x 2 x 3 ] = [ 2 x 1 + x 3 β 2 x 1 β x 2 β 2 x 1 β x 3 ] = [ 0 0 0 ] \begin{bmatrix} 2 & 0 & 1 \\ β2 & -1 & 0 \\ β2 & 0 & -1 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}=\begin{bmatrix} 2x_1+x_3 \\-2 x_1-x_2 \\ -2x_1-x_3 \end{bmatrix}=\begin{bmatrix} 0 \\0 \\0 \end{bmatrix} β£ β‘ β 2 β 2 β 2 β 0 β 1 0 β 1 0 β 1 β β¦ β€ β β£ β‘ β x 1 β x 2 β x 3 β β β¦ β€ β = β£ β‘ β 2 x 1 β + x 3 β β 2 x 1 β β x 2 β β 2 x 1 β β x 3 β β β¦ β€ β = β£ β‘ β 0 0 0 β β¦ β€ β
which implies x 1 = t x_1=t x 1 β = t , x 2 = β 2 t x_2=-2t x 2 β = β 2 t , x 3 = β 2 t x_3=-2t x 3 β = β 2 t , and hence, X 2 = [ 1 β 2 β 2 ] X_2=\begin{bmatrix} 1 \\-2 \\-2 \end{bmatrix} X 2 β = β£ β‘ β 1 β 2 β 2 β β¦ β€ β .
The eigenvector X 3 X_3 X 3 β corresponding to the eigenvalue Ξ» 3 = 3 \lambda_3=3 Ξ» 3 β = 3 is the solution to the equation ( A β Ξ» 3 I ) X = 0 (A-\lambda_3I)X=0 ( A β Ξ» 3 β I ) X = 0 .
[ 1 0 1 β 2 β 2 0 β 2 0 β 2 ] [ x 1 x 2 x 3 ] = [ x 1 + x 3 β 2 x 1 β 2 x 2 β 2 x 1 β 2 x 3 ] = [ 0 0 0 ] \begin{bmatrix} 1 & 0 & 1 \\ β2 & -2 & 0 \\ β2 & 0 & -2 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}=\begin{bmatrix} x_1+x_3 \\-2 x_1-2x_2 \\ -2x_1-2x_3 \end{bmatrix}=\begin{bmatrix} 0 \\0 \\0 \end{bmatrix} β£ β‘ β 1 β 2 β 2 β 0 β 2 0 β 1 0 β 2 β β¦ β€ β β£ β‘ β x 1 β x 2 β x 3 β β β¦ β€ β = β£ β‘ β x 1 β + x 3 β β 2 x 1 β β 2 x 2 β β 2 x 1 β β 2 x 3 β β β¦ β€ β = β£ β‘ β 0 0 0 β β¦ β€ β
which implies x 1 = t x_1=t x 1 β = t , x 2 = β t x_2=-t x 2 β = β t , x 3 = β t x_3=-t x 3 β = β t , and hence, X 3 = [ 1 β 1 β 1 ] X_3=\begin{bmatrix} 1 \\-1 \\-1 \end{bmatrix} X 3 β = β£ β‘ β 1 β 1 β 1 β β¦ β€ β .
3.3. Consider the matrix P = ( X 1 β£ X 2 β£ X 3 ) P=(X_1 | X_2|X_3) P = ( X 1 β β£ X 2 β β£ X 3 β ) (i.e. X 1 , X 2 , X 3 X_1, X_2 ,X_3 X 1 β , X 2 β , X 3 β are the columns of this matrix).
Then
A P = ( A X 1 β£ A X 2 β£ A X 3 ) = ( Ξ» 1 X 1 β£ Ξ» 2 X 2 β£ Ξ» 3 X 3 ) = P D AP=(AX_1|AX_2|AX_3)=(\lambda_1X_1|\lambda_2X_2|\lambda_3X_3)=PD A P = ( A X 1 β β£ A X 2 β β£ A X 3 β ) = ( Ξ» 1 β X 1 β β£ Ξ» 2 β X 2 β β£ Ξ» 3 β X 3 β ) = P D , where
D = [ Ξ» 1 0 0 0 Ξ» 2 0 0 0 Ξ» 3 ] = [ 1 0 0 0 2 0 0 0 3 ] D=\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} D = β£ β‘ β Ξ» 1 β 0 0 β 0 Ξ» 2 β 0 β 0 0 Ξ» 3 β β β¦ β€ β = β£ β‘ β 1 0 0 β 0 2 0 β 0 0 3 β β¦ β€ β is a diagonal matrix.
Therefore, D = P β 1 A P D=P^{-1}AP D = P β 1 A P , which means that the matrix A A A is diagonalizable.
Answer . The eigenvalues of A A A are Ξ» 1 = 1 \lambda_1=1 Ξ» 1 β = 1 , Ξ» 2 = 2 \lambda_2=2 Ξ» 2 β = 2 , Ξ» 3 = 3 \lambda_3=3 Ξ» 3 β = 3 .
The eigenvalues of A A A are X 1 = [ 0 1 0 ] X_1=\begin{bmatrix} 0 \\1 \\0 \end{bmatrix} X 1 β = β£ β‘ β 0 1 0 β β¦ β€ β , X 2 = [ 1 β 2 β 2 ] X_2=\begin{bmatrix} 1 \\-2 \\-2 \end{bmatrix} X 2 β = β£ β‘ β 1 β 2 β 2 β β¦ β€ β , X 3 = [ 1 β 1 β 1 ] X_3=\begin{bmatrix} 1 \\-1 \\-1 \end{bmatrix} X 3 β = β£ β‘ β 1 β 1 β 1 β β¦ β€ β .
The matrix P P P equals to ( X 1 β£ X 2 β£ X 3 ) = [ 0 1 1 1 β 2 β 1 0 β 2 β 1 ] (X_1 | X_2|X_3)=\begin{bmatrix} 0 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & -2 & -1 \end{bmatrix} ( X 1 β β£ X 2 β β£ X 3 β ) = β£ β‘ β 0 1 0 β 1 β 2 β 2 β 1 β 1 β 1 β β¦ β€ β .
Comments