Question #328527

25. For each of the linear operators below, determine whether it is normal, self adjoint, or neither (a) T : R2 → R2 defined by T(x, y) = (2x − 2y, −2x + 5y). (b) T : C 2 → C 2 defined by T(x, y) = (2x + iy, x + 2y). 


1
Expert's answer
2022-04-15T03:32:11-0400

a:T=[2225]T=[2225]=TTT=T2=TTNormal,selfadjointb:T=[2i12]T=[21i2]TTT=[2i12][21i2]=[52+2i22i5]TT=[21i2][2i12]=[52+2i22i5]=TTNormal,notselfadjointa:\\T=\left[ \begin{matrix} 2& -2\\ -2& 5\\\end{matrix} \right] \\T^*=\left[ \begin{matrix} 2& -2\\ -2& 5\\\end{matrix} \right] =T\\TT^*=T^2=TT^*\\Normal, self-adjoint\\b:\\T=\left[ \begin{matrix} 2& i\\ 1& 2\\\end{matrix} \right] \\T^*=\left[ \begin{matrix} 2& 1\\ -i& 2\\\end{matrix} \right] \ne T\\TT^*=\left[ \begin{matrix} 2& i\\ 1& 2\\\end{matrix} \right] \left[ \begin{matrix} 2& 1\\ -i& 2\\\end{matrix} \right] =\left[ \begin{matrix} 5& 2+2i\\ 2-2i& 5\\\end{matrix} \right] \\TT^*=\left[ \begin{matrix} 2& 1\\ -i& 2\\\end{matrix} \right] \left[ \begin{matrix} 2& i\\ 1& 2\\\end{matrix} \right] =\left[ \begin{matrix} 5& 2+2i\\ 2-2i& 5\\\end{matrix} \right] =TT^*\\Normal, not\,\,self-adjoint


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS