∀ a ⃗ = ( x 1 , x 2 , x 3 , x 4 ) T ( a ⃗ ) = 3 x 1 − 7 x 2 + 5 x 4 1. ∀ a ⃗ = ( x 1 , x 2 , x 3 , x 4 ) , b ⃗ = ( y 1 , y 2 , y 3 , y 4 ) T ( a ⃗ + b ⃗ ) = T ( a ⃗ ) + T ( b ⃗ ) a ⃗ + b ⃗ = ( x 1 , x 2 , x 3 , x 4 ) + ( y 1 , y 2 , y 3 , y 4 ) = = ( x 1 + y 1 , x 2 + y 2 , x 3 + y 3 , x 4 + y 4 ) T ( a ⃗ + b ⃗ ) = 3 ( x 1 + y 1 ) − 7 ( x 2 + y 2 ) + 5 ( x 4 + y 4 ) T ( a ⃗ ) = 3 x 1 − 7 x 2 + 5 x 4 T ( b ⃗ ) = 3 y 1 − 7 y 2 + 5 y 4 T ( a ⃗ ) + T ( a ⃗ ) = 3 x 1 − 7 x 2 + 5 x 4 + 3 y 1 − 7 y 2 + 5 y 4 \forall \vec{a}=(x_1,x_2,x_3,x_4)\\
T(\vec{a})=3x_1-7x_2+5x_4\\
1. \forall \vec{a}=(x_1,x_2,x_3,x_4), \vec{b}=(y_1,y_2,y_3,y_4)\\
T(\vec{a}+\vec{b})=T(\vec{a})+T(\vec{b})\\
\vec{a}+\vec{b}=(x_1,x_2,x_3,x_4)+(y_1,y_2,y_3,y_4)=\\
=(x_1+y_1,x_2+y_2,x_3+y_3,x_4+y_4)\\
T(\vec{a}+\vec{b})=3(x_1+y_1)-7(x_2+y_2)+5(x_4+y_4)\\
T(\vec{a})=3x_1-7x_2+5x_4\\
T(\vec{b})=3y_1-7y_2+5y_4\\
T(\vec{a})+T(\vec{a})=3x_1-7x_2+5x_4+3y_1-7y_2+5y_4 ∀ a = ( x 1 , x 2 , x 3 , x 4 ) T ( a ) = 3 x 1 − 7 x 2 + 5 x 4 1.∀ a = ( x 1 , x 2 , x 3 , x 4 ) , b = ( y 1 , y 2 , y 3 , y 4 ) T ( a + b ) = T ( a ) + T ( b ) a + b = ( x 1 , x 2 , x 3 , x 4 ) + ( y 1 , y 2 , y 3 , y 4 ) = = ( x 1 + y 1 , x 2 + y 2 , x 3 + y 3 , x 4 + y 4 ) T ( a + b ) = 3 ( x 1 + y 1 ) − 7 ( x 2 + y 2 ) + 5 ( x 4 + y 4 ) T ( a ) = 3 x 1 − 7 x 2 + 5 x 4 T ( b ) = 3 y 1 − 7 y 2 + 5 y 4 T ( a ) + T ( a ) = 3 x 1 − 7 x 2 + 5 x 4 + 3 y 1 − 7 y 2 + 5 y 4
2. ∀ α ∈ R , ∀ a ⃗ = ( x 1 , x 2 , x 3 , x 4 ) T ( α a ⃗ ) = α T ( a ⃗ ) α a ⃗ = ( α x 1 , α x 2 , α x 3 , α x 4 ) T ( α a ⃗ ) = 3 α x 1 − 7 α x 2 + 5 α x 4 = = α ( 3 x 1 − 7 x 2 + 5 x 4 ) = α T ( a ⃗ ) 2. \forall \alpha\in R, \forall \vec{a}=(x_1,x_2,x_3,x_4)\\
T(\alpha\vec{a})=\alpha T(\vec{a})\\
\alpha\vec{a}=(\alpha x_1,\alpha x_2,\alpha x_3,\alpha x_4)\\
T(\alpha\vec{a})=3\alpha x_1-7\alpha x_2+5\alpha x_4=\\
=\alpha(3x_1-7x_2+5x_4)=\alpha T(\vec{a}) 2.∀ α ∈ R , ∀ a = ( x 1 , x 2 , x 3 , x 4 ) T ( α a ) = α T ( a ) α a = ( α x 1 , α x 2 , α x 3 , α x 4 ) T ( α a ) = 3 α x 1 − 7 α x 2 + 5 α x 4 = = α ( 3 x 1 − 7 x 2 + 5 x 4 ) = α T ( a )
T T T is a linear transformation.
Basis:
e 1 ⃗ = ( 1 , 0 , 0 , 0 ) e 2 ⃗ = ( 0 , 1 , 0 , 0 ) e 3 ⃗ = ( 0 , 0 , 1 , 0 ) e 4 ⃗ = ( 0 , 0 , 0 , 1 ) \vec{e_1}=(1,0,0,0)\\
\vec{e_2}=(0,1,0,0)\\
\vec{e_3}=(0,0,1,0)\\
\vec{e_4}=(0,0,0,1)\\ e 1 = ( 1 , 0 , 0 , 0 ) e 2 = ( 0 , 1 , 0 , 0 ) e 3 = ( 0 , 0 , 1 , 0 ) e 4 = ( 0 , 0 , 0 , 1 )
T ( e 1 ⃗ ) = 3 x 1 = 3 e 1 ⃗ + 0 e 2 ⃗ + 0 e 3 ⃗ + 0 e 4 ⃗ T ( e 2 ⃗ ) = − 7 x 2 = 0 e 1 ⃗ − 7 e 2 ⃗ + 0 e 3 ⃗ + 0 e 4 ⃗ T ( e 3 ⃗ ) = 0 = 0 e 1 ⃗ + 0 e 2 ⃗ + 0 e 3 ⃗ + 0 e 4 ⃗ T ( e 4 ⃗ ) = 5 x 4 = 0 e 1 ⃗ + 0 e 2 ⃗ + 0 e 3 ⃗ + 5 e 4 ⃗ T = ( 3 0 0 0 0 − 7 0 0 0 0 0 0 0 0 0 5 ) T(\vec{e_1})=3x_1= 3\vec{e_1}+0\vec{e_2}+0\vec{e_3}+0\vec{e_4}\\
T(\vec{e_2})=-7x_2= 0\vec{e_1}-7\vec{e_2}+0\vec{e_3}+0\vec{e_4}\\
T(\vec{e_3})=0= 0\vec{e_1}+0\vec{e_2}+0\vec{e_3}+0\vec{e_4}\\
T(\vec{e_4})=5x_4= 0\vec{e_1}+0\vec{e_2}+0\vec{e_3}+5\vec{e_4}\\
T=\begin{pmatrix}
3 & 0&0&0 \\
0 & -7&0&0 \\
0 & 0&0&0 \\
0 & 0&0&5
\end{pmatrix} T ( e 1 ) = 3 x 1 = 3 e 1 + 0 e 2 + 0 e 3 + 0 e 4 T ( e 2 ) = − 7 x 2 = 0 e 1 − 7 e 2 + 0 e 3 + 0 e 4 T ( e 3 ) = 0 = 0 e 1 + 0 e 2 + 0 e 3 + 0 e 4 T ( e 4 ) = 5 x 4 = 0 e 1 + 0 e 2 + 0 e 3 + 5 e 4 T = ⎝ ⎛ 3 0 0 0 0 − 7 0 0 0 0 0 0 0 0 0 5 ⎠ ⎞
∀ a ⃗ = ( x 1 , x 2 , x 3 , x 4 ) T ( a ⃗ ) = 3 x 1 − 7 x 2 + 5 x 4 = 0 ⃗ 3 x 1 = 0 , x 1 = 0 − 7 x 2 = 0 , x 2 = 0 5 x 4 = 0 , x 4 = 0 ∀ x 3 ( 0 , 0 , x 3 , 0 ) , x 3 ∈ R \forall \vec{a}=(x_1,x_2,x_3,x_4)\\
T(\vec{a})=3x_1-7x_2+5x_4=\vec{0}\\
3x_1=0, x_1=0\\
-7x_2=0, x_2=0\\
5x_4=0, x_4=0\\
\forall x_3\\
(0,0,x_3,0), x_3\in R ∀ a = ( x 1 , x 2 , x 3 , x 4 ) T ( a ) = 3 x 1 − 7 x 2 + 5 x 4 = 0 3 x 1 = 0 , x 1 = 0 − 7 x 2 = 0 , x 2 = 0 5 x 4 = 0 , x 4 = 0 ∀ x 3 ( 0 , 0 , x 3 , 0 ) , x 3 ∈ R
Comments