∀a=(x1,x2,x3,x4)T(a)=3x1−7x2+5x41.∀a=(x1,x2,x3,x4),b=(y1,y2,y3,y4)T(a+b)=T(a)+T(b)a+b=(x1,x2,x3,x4)+(y1,y2,y3,y4)==(x1+y1,x2+y2,x3+y3,x4+y4)T(a+b)=3(x1+y1)−7(x2+y2)+5(x4+y4)T(a)=3x1−7x2+5x4T(b)=3y1−7y2+5y4T(a)+T(a)=3x1−7x2+5x4+3y1−7y2+5y4
2.∀α∈R,∀a=(x1,x2,x3,x4)T(αa)=αT(a)αa=(αx1,αx2,αx3,αx4)T(αa)=3αx1−7αx2+5αx4==α(3x1−7x2+5x4)=αT(a)
T is a linear transformation.
Basis:
e1=(1,0,0,0)e2=(0,1,0,0)e3=(0,0,1,0)e4=(0,0,0,1)
T(e1)=3x1=3e1+0e2+0e3+0e4T(e2)=−7x2=0e1−7e2+0e3+0e4T(e3)=0=0e1+0e2+0e3+0e4T(e4)=5x4=0e1+0e2+0e3+5e4T=⎝⎛30000−70000000005⎠⎞
∀a=(x1,x2,x3,x4)T(a)=3x1−7x2+5x4=03x1=0,x1=0−7x2=0,x2=05x4=0,x4=0∀x3(0,0,x3,0),x3∈R
Comments
Leave a comment