Answer to Question #298594 in Linear Algebra for Hamis

Question #298594



Show that T(x1, x2, x3, x4) = 3x1 −7x2 + 5x4 is a linear transformation by finding the



matrix for the transformation. Then find a basis for the null space of the transforma￾tion.

1
Expert's answer
2022-02-22T04:45:19-0500

a=(x1,x2,x3,x4)T(a)=3x17x2+5x41.a=(x1,x2,x3,x4),b=(y1,y2,y3,y4)T(a+b)=T(a)+T(b)a+b=(x1,x2,x3,x4)+(y1,y2,y3,y4)==(x1+y1,x2+y2,x3+y3,x4+y4)T(a+b)=3(x1+y1)7(x2+y2)+5(x4+y4)T(a)=3x17x2+5x4T(b)=3y17y2+5y4T(a)+T(a)=3x17x2+5x4+3y17y2+5y4\forall \vec{a}=(x_1,x_2,x_3,x_4)\\ T(\vec{a})=3x_1-7x_2+5x_4\\ 1. \forall \vec{a}=(x_1,x_2,x_3,x_4), \vec{b}=(y_1,y_2,y_3,y_4)\\ T(\vec{a}+\vec{b})=T(\vec{a})+T(\vec{b})\\ \vec{a}+\vec{b}=(x_1,x_2,x_3,x_4)+(y_1,y_2,y_3,y_4)=\\ =(x_1+y_1,x_2+y_2,x_3+y_3,x_4+y_4)\\ T(\vec{a}+\vec{b})=3(x_1+y_1)-7(x_2+y_2)+5(x_4+y_4)\\ T(\vec{a})=3x_1-7x_2+5x_4\\ T(\vec{b})=3y_1-7y_2+5y_4\\ T(\vec{a})+T(\vec{a})=3x_1-7x_2+5x_4+3y_1-7y_2+5y_4

2.αR,a=(x1,x2,x3,x4)T(αa)=αT(a)αa=(αx1,αx2,αx3,αx4)T(αa)=3αx17αx2+5αx4==α(3x17x2+5x4)=αT(a)2. \forall \alpha\in R, \forall \vec{a}=(x_1,x_2,x_3,x_4)\\ T(\alpha\vec{a})=\alpha T(\vec{a})\\ \alpha\vec{a}=(\alpha x_1,\alpha x_2,\alpha x_3,\alpha x_4)\\ T(\alpha\vec{a})=3\alpha x_1-7\alpha x_2+5\alpha x_4=\\ =\alpha(3x_1-7x_2+5x_4)=\alpha T(\vec{a})

TT is a linear transformation.

Basis:

e1=(1,0,0,0)e2=(0,1,0,0)e3=(0,0,1,0)e4=(0,0,0,1)\vec{e_1}=(1,0,0,0)\\ \vec{e_2}=(0,1,0,0)\\ \vec{e_3}=(0,0,1,0)\\ \vec{e_4}=(0,0,0,1)\\

T(e1)=3x1=3e1+0e2+0e3+0e4T(e2)=7x2=0e17e2+0e3+0e4T(e3)=0=0e1+0e2+0e3+0e4T(e4)=5x4=0e1+0e2+0e3+5e4T=(3000070000000005)T(\vec{e_1})=3x_1= 3\vec{e_1}+0\vec{e_2}+0\vec{e_3}+0\vec{e_4}\\ T(\vec{e_2})=-7x_2= 0\vec{e_1}-7\vec{e_2}+0\vec{e_3}+0\vec{e_4}\\ T(\vec{e_3})=0= 0\vec{e_1}+0\vec{e_2}+0\vec{e_3}+0\vec{e_4}\\ T(\vec{e_4})=5x_4= 0\vec{e_1}+0\vec{e_2}+0\vec{e_3}+5\vec{e_4}\\ T=\begin{pmatrix} 3 & 0&0&0 \\ 0 & -7&0&0 \\ 0 & 0&0&0 \\ 0 & 0&0&5 \end{pmatrix}


a=(x1,x2,x3,x4)T(a)=3x17x2+5x4=03x1=0,x1=07x2=0,x2=05x4=0,x4=0x3(0,0,x3,0),x3R\forall \vec{a}=(x_1,x_2,x_3,x_4)\\ T(\vec{a})=3x_1-7x_2+5x_4=\vec{0}\\ 3x_1=0, x_1=0\\ -7x_2=0, x_2=0\\ 5x_4=0, x_4=0\\ \forall x_3\\ (0,0,x_3,0), x_3\in R


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment