Augmented matrix
⎣⎡12−13−11202−2−40−1−21−3−1−21−3⎦⎤ R2=R2−2R1
⎣⎡10−13−13202−6−40−101−3−101−3⎦⎤ R3=R3+R1
⎣⎡1003−13102−6−20−100−3−100−3⎦⎤ R4=R4−3R1
⎣⎡1000−13132−6−2−6−1000−1000⎦⎤ R2=R2/3
⎣⎡1000−11132−2−2−6−1000−1000⎦⎤ R1=R1+R2
⎣⎡100001130−2−2−6−1000−1000⎦⎤ R3=R3−R2
⎣⎡100001030−20−6−1000−1000⎦⎤ R4=R4−3R2
⎣⎡100001000−200−1000−1000⎦⎤ If w=t,t∈R,z=s,s∈R, then x=−1+t,y=2s,z=s,w=t,t,s∈R.
The linear system has infinitely many solutions
(−1+t,2s,s,t), t,s∈R
Comments