T(x1, x2, x3, x4) = 3x1 −7x2 + 5x4 can be expressed as
T [ x 1 x 2 x 3 x 4 ] = [ 3 x 1 − 7 x 2 5 x 4 ] T\begin{bmatrix}
x1 \\
x2\\
x3\\
x4
\end{bmatrix} = \begin{bmatrix}
3x1 \\
-7 x2\\
5x4\\
\end{bmatrix} T ⎣ ⎡ x 1 x 2 x 3 x 4 ⎦ ⎤ = ⎣ ⎡ 3 x 1 − 7 x 2 5 x 4 ⎦ ⎤
T: R4 → \to → R3
So the domain of T is R3 . To find the column of the standard matrix of transformation we find T(e1 ), T(e2 ), T(e3 ), and T(e4 )
Using the rule for transformation
T(e1 ) = [ 1 0 0 0 ] = [ 3 ( 1 ) − 7 ( 0 ) 5 ( 0 ) ] = [ 3 0 0 ] \begin{bmatrix}
1 \\
0\\
0\\
0
\end{bmatrix} = \begin{bmatrix}
3(1) \\
-7(0)\\
5(0)\\
\end{bmatrix} =
\begin{bmatrix}
3 \\
0\\
0\\
\end{bmatrix} ⎣ ⎡ 1 0 0 0 ⎦ ⎤ = ⎣ ⎡ 3 ( 1 ) − 7 ( 0 ) 5 ( 0 ) ⎦ ⎤ = ⎣ ⎡ 3 0 0 ⎦ ⎤
T(e2 ) = [ 0 1 0 0 ] = [ 3 ( 0 ) − 7 ( 1 ) 5 ( 0 ) ] = [ 0 − 7 0 ] \begin{bmatrix}
0 \\
1\\
0\\
0
\end{bmatrix} = \begin{bmatrix}
3(0) \\
-7(1)\\
5(0)\\
\end{bmatrix} =
\begin{bmatrix}
0 \\
-7\\
0\\
\end{bmatrix} ⎣ ⎡ 0 1 0 0 ⎦ ⎤ = ⎣ ⎡ 3 ( 0 ) − 7 ( 1 ) 5 ( 0 ) ⎦ ⎤ = ⎣ ⎡ 0 − 7 0 ⎦ ⎤
T(e3 ) = [ 0 0 1 0 ] = [ 3 ( 0 ) − 7 ( 0 ) 5 ( 0 ) ] = [ 0 0 0 ] \begin{bmatrix}
0 \\
0\\
1\\
0
\end{bmatrix} = \begin{bmatrix}
3(0) \\
-7(0)\\
5(0)\\
\end{bmatrix} =
\begin{bmatrix}
0 \\
0\\
0\\
\end{bmatrix} ⎣ ⎡ 0 0 1 0 ⎦ ⎤ = ⎣ ⎡ 3 ( 0 ) − 7 ( 0 ) 5 ( 0 ) ⎦ ⎤ = ⎣ ⎡ 0 0 0 ⎦ ⎤
T(e4) = [ 0 0 0 1 ] = [ 3 ( 0 ) − 7 ( 0 ) 5 ( 1 ) ] = [ 0 0 5 ] \begin{bmatrix}
0 \\
0\\
0\\
1
\end{bmatrix} = \begin{bmatrix}
3(0) \\
-7(0)\\
5(1)\\
\end{bmatrix} =
\begin{bmatrix}
0 \\
0\\
5\\
\end{bmatrix} ⎣ ⎡ 0 0 0 1 ⎦ ⎤ = ⎣ ⎡ 3 ( 0 ) − 7 ( 0 ) 5 ( 1 ) ⎦ ⎤ = ⎣ ⎡ 0 0 5 ⎦ ⎤
Therefore the transformation matrix can be expressed as
[ 3 0 0 0 0 − 7 0 0 0 0 0 5 ] \begin{bmatrix}
3 & 0&0&0 \\
0&-7&0&0\\
0&0&0&5\\
\end{bmatrix} ⎣ ⎡ 3 0 0 0 − 7 0 0 0 0 0 0 5 ⎦ ⎤
Finding the Basis for the null space of the transformation
[ 3 0 0 0 0 − 7 0 0 0 0 0 5 ] [ x 1 x 2 x 3 x 4 ] = [ 0 0 0 ] \begin{bmatrix}
3 & 0&0&0 \\
0&-7&0&0\\
0&0&0&5\\
\end{bmatrix}
\begin{bmatrix}
x1\\
x2\\
x3\\
x4
\end{bmatrix} = \begin{bmatrix}
0 \\
0\\
0\\
\end{bmatrix} ⎣ ⎡ 3 0 0 0 − 7 0 0 0 0 0 0 5 ⎦ ⎤ ⎣ ⎡ x 1 x 2 x 3 x 4 ⎦ ⎤ = ⎣ ⎡ 0 0 0 ⎦ ⎤
Reduced Row Echelon Matrix for the augmented matrix
[ 3 0 0 0 ∣ 0 0 − 7 0 0 ∣ 0 0 0 0 0 ∣ 0 0 0 0 5 ∣ 0 ] \begin{bmatrix}
3 & 0 & 0 & 0 &\bigm| & 0 \\
0 & -7 & 0 & 0 &\bigm| & 0 \\
0 & 0 & 0 & 0 &\bigm| & 0 \\
0 & 0 & 0 & 5 &\bigm| & 0
\end{bmatrix} ⎣ ⎡ 3 0 0 0 0 − 7 0 0 0 0 0 0 0 0 0 5 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 0 0 0 0 ⎦ ⎤
Multiply row 1 by 1/3:
[ 1 0 0 0 ∣ 0 0 − 7 0 0 ∣ 0 0 0 0 0 ∣ 0 0 0 0 5 ∣ 0 ] \begin{bmatrix}
1 & 0 & 0 & 0 &\bigm| & 0 \\
0 & -7 & 0 & 0 &\bigm| & 0 \\
0 & 0 & 0 & 0 &\bigm| & 0 \\
0 & 0 & 0 & 5 &\bigm| & 0
\end{bmatrix} ⎣ ⎡ 1 0 0 0 0 − 7 0 0 0 0 0 0 0 0 0 5 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 0 0 0 0 ⎦ ⎤
Multiply row 2 by -1/7:
[ 1 0 0 0 ∣ 0 0 1 0 0 ∣ 0 0 0 0 0 ∣ 0 0 0 0 5 ∣ 0 ] \begin{bmatrix}
1 & 0 & 0 & 0 &\bigm| & 0 \\
0 & 1 & 0 & 0 &\bigm| & 0 \\
0 & 0 & 0 & 0 &\bigm| & 0 \\
0 & 0 & 0 & 5 &\bigm| & 0
\end{bmatrix} ⎣ ⎡ 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 5 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 0 0 0 0 ⎦ ⎤
Multiply row 3 by 1/5:
[ 1 0 0 0 ∣ 0 0 1 0 0 ∣ 0 0 0 0 0 ∣ 0 0 0 0 1 ∣ 0 ] \begin{bmatrix}
1 & 0 & 0 & 0 &\bigm| & 0 \\
0 & 1 & 0 & 0 &\bigm| & 0 \\
0 & 0 & 0 & 0 &\bigm| & 0 \\
0 & 0 & 0 & 1 &\bigm| & 0
\end{bmatrix} ⎣ ⎡ 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 0 0 0 0 ⎦ ⎤
Convert the matrix equation back to an equivalent system:
x 1 = − 0 x 2 = − 0 x 4 = − 0 \begin{array}{rcrcrcr}
x_{1}&&&&&=&\phantom{-}0 \\
&&x_{2}&&&=&\phantom{-}0 \\
&&&&x_{4}&=&\phantom{-}0 \\
\end{array} x 1 x 2 x 4 = = = − 0 − 0 − 0
Add an equation for each free variable:
x 1 = − 0 x 2 = − 0 x 3 = x 3 x 4 = − 0 \begin{array}{rcrcrcrcr}
x_{1}&&&&&&&=&\phantom{-}0 \\
&&x_{2}&&&&&=&\phantom{-}0 \\
&&&&x_{3}&&&=&x_{3} \\
&&&&&&x_{4}&=&\phantom{-}0 \\
\end{array} x 1 x 2 x 3 x 4 = = = = − 0 − 0 x 3 − 0
Solve for each variable in terms of the free variables:
x 1 = − 0 x 2 = − 0 x 3 = x 3 x 4 = − 0 \begin{array}{rcrcrcrcr}
x_{1}&&&&&&&=&\phantom{-}0 \\
&&x_{2}&&&&&=&\phantom{-}0 \\
&&&&x_{3}&&&=&x_{3} \\
&&&&&&x_{4}&=&\phantom{-}0 \\
\end{array} x 1 x 2 x 3 x 4 = = = = − 0 − 0 x 3 − 0
Collect terms into vectors:
[ x 1 x 2 x 3 x 4 ] = [ 0 0 x 3 0 ] \left[ \begin{array}{c}x_{1}\\x_{2}\\x_{3}\\x_{4}\\\end{array} \right]
=
\left[ \begin{array}{c} 0\\0\\x_{3}\\0\\\end{array} \right] ⎣ ⎡ x 1 x 2 x 3 x 4 ⎦ ⎤ = ⎣ ⎡ 0 0 x 3 0 ⎦ ⎤
Factor out variables on the right side:
[ x 1 x 2 x 3 x 4 ] = x 3 [ − 0 − 0 − 1 − 0 ] \left[ \begin{array}{c}x_{1}\\x_{2}\\x_{3}\\x_{4}\\\end{array} \right]
=
x_{3}\left[ \begin{array}{c} \phantom{-}0\\\phantom{-}0\\\phantom{-}1\\\phantom{-}0\\\end{array} \right] ⎣ ⎡ x 1 x 2 x 3 x 4 ⎦ ⎤ = x 3 ⎣ ⎡ − 0 − 0 − 1 − 0 ⎦ ⎤
Thus, a basis for the null space is:
{ [ − 0 − 0 − 1 − 0 ] } \displaystyle \left\{\left[ \begin{array}{c}
\phantom{-}0\\
\phantom{-}0\\
\phantom{-}1\\
\phantom{-}0\\
\end{array} \right]\right\} ⎩ ⎨ ⎧ ⎣ ⎡ − 0 − 0 − 1 − 0 ⎦ ⎤ ⎭ ⎬ ⎫ [Answer ]
Comments