Show that T(x1, x2, x3, x4) = 3x1 −7x2 + 5x4 is a linear transformation by finding the
matrix for the transformation. Then find a basis for the null space of the transformation.
T(x1, x2, x3, x4) = 3x1 −7x2 + 5x4 can be expressed as
"T\\begin{bmatrix}\n x1 \\\\\n x2\\\\\nx3\\\\\nx4\n\\end{bmatrix} = \\begin{bmatrix}\n 3x1 \\\\\n-7 x2\\\\\n5x4\\\\\n\\end{bmatrix}"
T: R4"\\to" R3
So the domain of T is R3. To find the column of the standard matrix of transformation we find T(e1), T(e2), T(e3), and T(e4)
Using the rule for transformation
T(e1) = "\\begin{bmatrix}\n 1 \\\\\n0\\\\\n0\\\\\n0\n\\end{bmatrix} = \\begin{bmatrix}\n 3(1) \\\\\n-7(0)\\\\\n5(0)\\\\\n\n\\end{bmatrix} =\n\\begin{bmatrix}\n 3 \\\\\n0\\\\\n0\\\\\n\n\\end{bmatrix}"
T(e2) = "\\begin{bmatrix}\n 0 \\\\\n1\\\\\n0\\\\\n0\n\\end{bmatrix} = \\begin{bmatrix}\n 3(0) \\\\\n-7(1)\\\\\n5(0)\\\\\n\n\\end{bmatrix} =\n\\begin{bmatrix}\n 0 \\\\\n-7\\\\\n0\\\\\n\n\\end{bmatrix}"
T(e3) = "\\begin{bmatrix}\n 0 \\\\\n0\\\\\n1\\\\\n0\n\\end{bmatrix} = \\begin{bmatrix}\n 3(0) \\\\\n-7(0)\\\\\n5(0)\\\\\n\n\\end{bmatrix} =\n\\begin{bmatrix}\n 0 \\\\\n0\\\\\n0\\\\\n\n\\end{bmatrix}"
T(e4) = "\\begin{bmatrix}\n 0 \\\\\n0\\\\\n0\\\\\n1\n\\end{bmatrix} = \\begin{bmatrix}\n 3(0) \\\\\n-7(0)\\\\\n5(1)\\\\\n\n\\end{bmatrix} =\n\\begin{bmatrix}\n 0 \\\\\n0\\\\\n5\\\\\n\n\\end{bmatrix}"
Therefore the transformation matrix can be expressed as
"\\begin{bmatrix}\n 3 & 0&0&0 \\\\\n0&-7&0&0\\\\\n0&0&0&5\\\\\n\n\\end{bmatrix}"
Finding the Basis for the null space of the transformation
"\\begin{bmatrix}\n 3 & 0&0&0 \\\\\n0&-7&0&0\\\\\n0&0&0&5\\\\\n\n\\end{bmatrix}\n\n\\begin{bmatrix}\n x1\\\\\nx2\\\\\nx3\\\\\nx4\n\n\\end{bmatrix} = \\begin{bmatrix}\n 0 \\\\\n0\\\\\n0\\\\\n\n\\end{bmatrix}"
Reduced Row Echelon Matrix for the augmented matrix
"\\begin{bmatrix}\n\n 3 & 0 & 0 & 0 &\\bigm| & 0 \\\\\n\n 0 & -7 & 0 & 0 &\\bigm| & 0 \\\\\n\n 0 & 0 & 0 & 0 &\\bigm| & 0 \\\\ \n\n 0 & 0 & 0 & 5 &\\bigm| & 0\n\n\\end{bmatrix}"
Multiply row 1 by 1/3:
"\\begin{bmatrix}\n\n 1 & 0 & 0 & 0 &\\bigm| & 0 \\\\\n\n 0 & -7 & 0 & 0 &\\bigm| & 0 \\\\\n\n 0 & 0 & 0 & 0 &\\bigm| & 0 \\\\ \n\n 0 & 0 & 0 & 5 &\\bigm| & 0\n\n\\end{bmatrix}"
Multiply row 2 by -1/7:
"\\begin{bmatrix}\n\n 1 & 0 & 0 & 0 &\\bigm| & 0 \\\\\n\n 0 & 1 & 0 & 0 &\\bigm| & 0 \\\\\n\n 0 & 0 & 0 & 0 &\\bigm| & 0 \\\\ \n\n 0 & 0 & 0 & 5 &\\bigm| & 0\n\n\\end{bmatrix}"
Multiply row 3 by 1/5:
"\\begin{bmatrix}\n\n 1 & 0 & 0 & 0 &\\bigm| & 0 \\\\\n\n 0 & 1 & 0 & 0 &\\bigm| & 0 \\\\\n\n 0 & 0 & 0 & 0 &\\bigm| & 0 \\\\ \n\n 0 & 0 & 0 & 1 &\\bigm| & 0\n\n\\end{bmatrix}"
Convert the matrix equation back to an equivalent system:
"\\begin{array}{rcrcrcr}\n x_{1}&&&&&=&\\phantom{-}0 \\\\\n &&x_{2}&&&=&\\phantom{-}0 \\\\\n &&&&x_{4}&=&\\phantom{-}0 \\\\\n \\end{array}"
Add an equation for each free variable:
"\\begin{array}{rcrcrcrcr}\n x_{1}&&&&&&&=&\\phantom{-}0 \\\\\n &&x_{2}&&&&&=&\\phantom{-}0 \\\\\n &&&&x_{3}&&&=&x_{3} \\\\\n &&&&&&x_{4}&=&\\phantom{-}0 \\\\\n \\end{array}"
Solve for each variable in terms of the free variables:
"\\begin{array}{rcrcrcrcr}\n x_{1}&&&&&&&=&\\phantom{-}0 \\\\\n &&x_{2}&&&&&=&\\phantom{-}0 \\\\\n &&&&x_{3}&&&=&x_{3} \\\\\n &&&&&&x_{4}&=&\\phantom{-}0 \\\\\n \\end{array}"
Collect terms into vectors:
"\\left[ \\begin{array}{c}x_{1}\\\\x_{2}\\\\x_{3}\\\\x_{4}\\\\\\end{array} \\right]\n = \n\\left[ \\begin{array}{c} 0\\\\0\\\\x_{3}\\\\0\\\\\\end{array} \\right]"
Factor out variables on the right side:
"\\left[ \\begin{array}{c}x_{1}\\\\x_{2}\\\\x_{3}\\\\x_{4}\\\\\\end{array} \\right]\n = \nx_{3}\\left[ \\begin{array}{c} \\phantom{-}0\\\\\\phantom{-}0\\\\\\phantom{-}1\\\\\\phantom{-}0\\\\\\end{array} \\right]"
Thus, a basis for the null space is:
"\\displaystyle \\left\\{\\left[ \\begin{array}{c}\n\\phantom{-}0\\\\\n\\phantom{-}0\\\\\n\\phantom{-}1\\\\\n\\phantom{-}0\\\\\n\\end{array} \\right]\\right\\}" [Answer]
Comments
Leave a comment