Question #298444

Show that T(x1, x2, x3, x4) = 3x1 −7x2 + 5x4 is a linear transformation by finding the

matrix for the transformation. Then find a basis for the null space of the transforma￾tion.


1
Expert's answer
2022-02-21T16:05:25-0500

T(x1, x2, x3, x4) = 3x1 −7x2 + 5x4 can be expressed as

T[x1x2x3x4]=[3x17x25x4]T\begin{bmatrix} x1 \\ x2\\ x3\\ x4 \end{bmatrix} = \begin{bmatrix} 3x1 \\ -7 x2\\ 5x4\\ \end{bmatrix}

T: R4\to R3

So the domain of T is R3. To find the column of the standard matrix of transformation we find T(e1), T(e2), T(e3), and T(e4)

Using the rule for transformation

T(e1) = [1000]=[3(1)7(0)5(0)]=[300]\begin{bmatrix} 1 \\ 0\\ 0\\ 0 \end{bmatrix} = \begin{bmatrix} 3(1) \\ -7(0)\\ 5(0)\\ \end{bmatrix} = \begin{bmatrix} 3 \\ 0\\ 0\\ \end{bmatrix}


T(e2) = [0100]=[3(0)7(1)5(0)]=[070]\begin{bmatrix} 0 \\ 1\\ 0\\ 0 \end{bmatrix} = \begin{bmatrix} 3(0) \\ -7(1)\\ 5(0)\\ \end{bmatrix} = \begin{bmatrix} 0 \\ -7\\ 0\\ \end{bmatrix}


T(e3) = [0010]=[3(0)7(0)5(0)]=[000]\begin{bmatrix} 0 \\ 0\\ 1\\ 0 \end{bmatrix} = \begin{bmatrix} 3(0) \\ -7(0)\\ 5(0)\\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0\\ 0\\ \end{bmatrix}


T(e4) = [0001]=[3(0)7(0)5(1)]=[005]\begin{bmatrix} 0 \\ 0\\ 0\\ 1 \end{bmatrix} = \begin{bmatrix} 3(0) \\ -7(0)\\ 5(1)\\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0\\ 5\\ \end{bmatrix}


Therefore the transformation matrix can be expressed as

[300007000005]\begin{bmatrix} 3 & 0&0&0 \\ 0&-7&0&0\\ 0&0&0&5\\ \end{bmatrix}


Finding the Basis for the null space of the transformation

[300007000005][x1x2x3x4]=[000]\begin{bmatrix} 3 & 0&0&0 \\ 0&-7&0&0\\ 0&0&0&5\\ \end{bmatrix} \begin{bmatrix} x1\\ x2\\ x3\\ x4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0\\ 0\\ \end{bmatrix}


Reduced Row Echelon Matrix for the augmented matrix


[30000070000000000050]\begin{bmatrix} 3 & 0 & 0 & 0 &\bigm| & 0 \\ 0 & -7 & 0 & 0 &\bigm| & 0 \\ 0 & 0 & 0 & 0 &\bigm| & 0 \\ 0 & 0 & 0 & 5 &\bigm| & 0 \end{bmatrix}


Multiply row 1 by 1/3:

[10000070000000000050]\begin{bmatrix} 1 & 0 & 0 & 0 &\bigm| & 0 \\ 0 & -7 & 0 & 0 &\bigm| & 0 \\ 0 & 0 & 0 & 0 &\bigm| & 0 \\ 0 & 0 & 0 & 5 &\bigm| & 0 \end{bmatrix}


Multiply row 2 by -1/7:

[10000010000000000050]\begin{bmatrix} 1 & 0 & 0 & 0 &\bigm| & 0 \\ 0 & 1 & 0 & 0 &\bigm| & 0 \\ 0 & 0 & 0 & 0 &\bigm| & 0 \\ 0 & 0 & 0 & 5 &\bigm| & 0 \end{bmatrix}


Multiply row 3 by 1/5:

[10000010000000000010]\begin{bmatrix} 1 & 0 & 0 & 0 &\bigm| & 0 \\ 0 & 1 & 0 & 0 &\bigm| & 0 \\ 0 & 0 & 0 & 0 &\bigm| & 0 \\ 0 & 0 & 0 & 1 &\bigm| & 0 \end{bmatrix}


Convert the matrix equation back to an equivalent system:

x1=0x2=0x4=0\begin{array}{rcrcrcr} x_{1}&&&&&=&\phantom{-}0 \\ &&x_{2}&&&=&\phantom{-}0 \\ &&&&x_{4}&=&\phantom{-}0 \\ \end{array}


Add an equation for each free variable:

x1=0x2=0x3=x3x4=0\begin{array}{rcrcrcrcr} x_{1}&&&&&&&=&\phantom{-}0 \\ &&x_{2}&&&&&=&\phantom{-}0 \\ &&&&x_{3}&&&=&x_{3} \\ &&&&&&x_{4}&=&\phantom{-}0 \\ \end{array}

Solve for each variable in terms of the free variables:


x1=0x2=0x3=x3x4=0\begin{array}{rcrcrcrcr} x_{1}&&&&&&&=&\phantom{-}0 \\ &&x_{2}&&&&&=&\phantom{-}0 \\ &&&&x_{3}&&&=&x_{3} \\ &&&&&&x_{4}&=&\phantom{-}0 \\ \end{array}


Collect terms into vectors:

[x1x2x3x4]=[00x30]\left[ \begin{array}{c}x_{1}\\x_{2}\\x_{3}\\x_{4}\\\end{array} \right] = \left[ \begin{array}{c} 0\\0\\x_{3}\\0\\\end{array} \right]


Factor out variables on the right side:


[x1x2x3x4]=x3[0010]\left[ \begin{array}{c}x_{1}\\x_{2}\\x_{3}\\x_{4}\\\end{array} \right] = x_{3}\left[ \begin{array}{c} \phantom{-}0\\\phantom{-}0\\\phantom{-}1\\\phantom{-}0\\\end{array} \right]


Thus, a basis for the null space is:

{[0010]}\displaystyle \left\{\left[ \begin{array}{c} \phantom{-}0\\ \phantom{-}0\\ \phantom{-}1\\ \phantom{-}0\\ \end{array} \right]\right\} [Answer]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS