Question #285707

Find a 2×2 matrix A such that A^2 is a diagonal but not A


1
Expert's answer
2022-01-10T13:08:50-0500

Let

A=[abcd]A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}

Then


A2=[abcd][abcd]=[a2+bcab+bdac+dcbc+d2]A^2=\begin{bmatrix} a & b \\ c & d \end{bmatrix}\begin{bmatrix} a & b \\ c & d \end{bmatrix}=\begin{bmatrix} a^2+bc & ab+bd \\ ac+dc & bc+d^2 \end{bmatrix}

Given A2A^2 is a diagonal. Then


{ab+bd=0ac+dc=0=>{b(a+d)=0c(a+d)=0\begin{cases} ab+bd=0 \\ ac+dc=0 \end{cases}=>\begin{cases} b(a+d)=0 \\ c(a+d)=0 \end{cases}

If a+d0,a+d\not=0, then b=c=0,b=c=0, and matrix A=[a00d]A=\begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} is a diagonal.

We have contradiction.

Hence a+d=0a+d=0 and at least one of the numbers cc and bb is not equal to zero.

Therefore

A=[abca],A=\begin{bmatrix} a & b \\ c & -a \end{bmatrix}, and at least one of the numbers cc and bb is not equal to zero.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS