(i) (2u+v+w, u, -w)
(ii) (2u,v+w, u-w)
(iii) (u,v, -w)
Section 1
Using Gram- Schmidt principle
"e_1=(1,0,0)"
"f_2=(1,2,1)-\\frac{(1,2,1).(1,0,0)}{(1,0,0).(1,0,0)}(1,0,0)"
="(0,2,1)"
"e_2=\\frac{f_2}{||f_2||}=\\frac{(0,2,1)}{\u221a5}"
"e_2=(\\frac{0}{\u221a5},\\frac{2}{\u221a5},\\frac{1}{\u221a5})"
"f_3=(1,2,2)-[(1,2,2).(1,2,2)](1,0,0)"
"-[(1,2,2).(0,2,1)](0,2,1)"
"=(0,-\\frac{2}{5},\\frac{4}{5})"
"\\frac{(0,\\frac{-2}{5},\\frac{4}{5})}{||f_3||}"
="\\frac{(0,\\frac{-2}{5},\\frac{4}{5})}{\\frac{2\u221a5}{5}}"
e3 ="(0,\\frac{-1}{\u221a5},\\frac{2}{\u221a5})"
Part 2
u-v=(1-1, 2- -2, 2- -1)=(0,4,3)
||u-v||= "\\sqrt{\\smash[b]{4^2+3^2}}=5"
Part 3
<u+v, u-v> = ||u||2 - 2 ||u|| ||v|| +||v||2
= 42 - 2(4)(3) +32
= 1
Part 4
let "u" = "x\\begin{pmatrix}\n 1 \\\\\n 0 \\\\\n0\n\\end{pmatrix}" "+ y\\begin{pmatrix}\n 0 \\\\\n \\frac{1}{\u221a2} \\\\\n\\frac {1}{\u221a2}\n\\end{pmatrix}"
"=\\begin{pmatrix}\n x \\\\\n \\frac {y}{\u221a2}\\\\\n\\frac {y}{\u221a2}\n\\end{pmatrix}"
"||(x,\\frac {y}{\u221a2},\\frac {y}{\u221a2}) -(2,4,6)||"
"is \\> minimum"
"(x-2)^2+(\\frac{y}{\u221a2}-4)^2+(\\frac {y}{\u221a2}-6)^2" "is \\> minimum"
"x^2-4x+y^2-\\frac{20y}{\u221a2}+\n\n\n\\>56" "\\>is \\> minimum"
"\\frac{d}{dx}(x^2-4x)=0"
"\\implies 2x-4=0\\quad x=2"
"\\frac {d}{dy}(y^2-\\frac{20y}{\u221a2})=0"
"2y-\\frac {20}{\u221a2}=0\\implies\\>y=\\frac{10}{\u221a2}"
Substituting the value of "x \\>and \\>y \\>in \\>u"
"u=\\begin{bmatrix}\n 2 \\\\\n 5 \\\\\n5\n\\end{bmatrix}"
Part 5
Transforming matrix "T" ;
"\\begin{pmatrix}\n 2x \\\\\n x+y \\\\\nx-z\n\\end{pmatrix}" ="x\\begin{pmatrix}\n 2\\\\\n1\\\\ \n1\n\\end{pmatrix}" "+y\\begin{pmatrix}\n 0 \\\\\n 1\\\\ \n0\n\\end{pmatrix}" +"z"
"\\begin{pmatrix}\n 0 \\\\\n 0\\\\\n-1\n\\end{pmatrix}"
"T=\\begin{pmatrix}\n 2& 0&0\\\\\n 1&1 & 0\\\\\n1&0&-1\n\\end{pmatrix}"
"T^*=T^T=\\begin{pmatrix}\n 2&1 & 1 \\\\\n 0&1& 0\\\\\n0&0&-1\n\\end{pmatrix}"
"\\begin{pmatrix}\n 2&1& 1\\\\\n 0&1 & 0\\\\\n0&0&-1\n\\end{pmatrix}\\begin{pmatrix}\n u \\\\\n v\\\\\nw\n\\end{pmatrix}" =
"\\begin{pmatrix}\n 2u+v+w \\\\\n v \\\\\n-w\n\\end{pmatrix}"
Therefore the adjoint operator "T^*(u,v,w)"
"=(2u+v+w,u,-w)"
Comments
Leave a comment