Question #256062
  1. Suppose T: R3 -> R3 is linear and has an upper-triangular matrix with respect to the basis (1, 0, 0), (1,2,1), (1,2,2). Then the orthonormal basis of R3 with respect to which T has an upper-triangular matrix is...
  2. For u = (1,2,2) and v= (1, -2, -1), the value of ||u-v|| is...
  3. Suppose that u,v E V, where V is a real vector space such that ||u|| = 4 and ||v|| = 3 Then < u + v, u - v > is...
  4. In R3, let U = Span ((1, 0, 0), (0, 1/sqrt2 , 1/sqrt2 )) The u E U such that || u - ( 2,4,6)|| is as small as possible is...
  5. Let T: R3 -> R3 defined as T(x,y,z) = (2x, x+y, x-z). Then adjoint operator T* (u,v,w) is...

(i) (2u+v+w, u, -w)

(ii) (2u,v+w, u-w)

(iii) (u,v, -w)


1
Expert's answer
2021-10-28T15:30:01-0400

Section 1


Using Gram- Schmidt principle

e1=(1,0,0)e_1=(1,0,0)

f2=(1,2,1)(1,2,1).(1,0,0)(1,0,0).(1,0,0)(1,0,0)f_2=(1,2,1)-\frac{(1,2,1).(1,0,0)}{(1,0,0).(1,0,0)}(1,0,0)

=(0,2,1)(0,2,1)

e2=f2f2=(0,2,1)5e_2=\frac{f_2}{||f_2||}=\frac{(0,2,1)}{√5}


e2=(05,25,15)e_2=(\frac{0}{√5},\frac{2}{√5},\frac{1}{√5})


f3=(1,2,2)[(1,2,2).(1,2,2)](1,0,0)f_3=(1,2,2)-[(1,2,2).(1,2,2)](1,0,0)

[(1,2,2).(0,2,1)](0,2,1)-[(1,2,2).(0,2,1)](0,2,1)

=(0,25,45)=(0,-\frac{2}{5},\frac{4}{5})


(0,25,45)f3\frac{(0,\frac{-2}{5},\frac{4}{5})}{||f_3||}


=(0,25,45)255\frac{(0,\frac{-2}{5},\frac{4}{5})}{\frac{2√5}{5}}


e3 =(0,15,25)(0,\frac{-1}{√5},\frac{2}{√5})



Part 2

u-v=(1-1, 2- -2, 2- -1)=(0,4,3)

||u-v||= 42+32=5\sqrt{\smash[b]{4^2+3^2}}=5



Part 3

<u+v, u-v> = ||u||2 - 2 ||u|| ||v|| +||v||2

= 42 - 2(4)(3) +32

= 1


Part 4

let uu = x(100)x\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} +y(01212)+ y\begin{pmatrix} 0 \\ \frac{1}{√2} \\ \frac {1}{√2} \end{pmatrix}



=(xy2y2)=\begin{pmatrix} x \\ \frac {y}{√2}\\ \frac {y}{√2} \end{pmatrix}


(x,y2,y2)(2,4,6)||(x,\frac {y}{√2},\frac {y}{√2}) -(2,4,6)||

isminimumis \> minimum


(x2)2+(y24)2+(y26)2(x-2)^2+(\frac{y}{√2}-4)^2+(\frac {y}{√2}-6)^2 isminimumis \> minimum


x24x+y220y2+56x^2-4x+y^2-\frac{20y}{√2}+ \>56 isminimum\>is \> minimum


ddx(x24x)=0\frac{d}{dx}(x^2-4x)=0

    2x4=0x=2\implies 2x-4=0\quad x=2


ddy(y220y2)=0\frac {d}{dy}(y^2-\frac{20y}{√2})=0

2y202=0    y=1022y-\frac {20}{√2}=0\implies\>y=\frac{10}{√2}


Substituting the value of xandyinux \>and \>y \>in \>u


u=[255]u=\begin{bmatrix} 2 \\ 5 \\ 5 \end{bmatrix}


Part 5

Transforming matrix TT ;

(2xx+yxz)\begin{pmatrix} 2x \\ x+y \\ x-z \end{pmatrix} =x(211)x\begin{pmatrix} 2\\ 1\\ 1 \end{pmatrix} +y(010)+y\begin{pmatrix} 0 \\ 1\\ 0 \end{pmatrix} +zz


(001)\begin{pmatrix} 0 \\ 0\\ -1 \end{pmatrix}



T=(200110101)T=\begin{pmatrix} 2& 0&0\\ 1&1 & 0\\ 1&0&-1 \end{pmatrix}



T=TT=(211010001)T^*=T^T=\begin{pmatrix} 2&1 & 1 \\ 0&1& 0\\ 0&0&-1 \end{pmatrix}


(211010001)(uvw)\begin{pmatrix} 2&1& 1\\ 0&1 & 0\\ 0&0&-1 \end{pmatrix}\begin{pmatrix} u \\ v\\ w \end{pmatrix} =


(2u+v+wvw)\begin{pmatrix} 2u+v+w \\ v \\ -w \end{pmatrix}



Therefore the adjoint operator T(u,v,w)T^*(u,v,w)

=(2u+v+w,u,w)=(2u+v+w,u,-w)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS