Section 1
Using Gram- Schmidt principle
e 1 = ( 1 , 0 , 0 ) e_1=(1,0,0) e 1 = ( 1 , 0 , 0 )
f 2 = ( 1 , 2 , 1 ) − ( 1 , 2 , 1 ) . ( 1 , 0 , 0 ) ( 1 , 0 , 0 ) . ( 1 , 0 , 0 ) ( 1 , 0 , 0 ) f_2=(1,2,1)-\frac{(1,2,1).(1,0,0)}{(1,0,0).(1,0,0)}(1,0,0) f 2 = ( 1 , 2 , 1 ) − ( 1 , 0 , 0 ) . ( 1 , 0 , 0 ) ( 1 , 2 , 1 ) . ( 1 , 0 , 0 ) ( 1 , 0 , 0 )
=( 0 , 2 , 1 ) (0,2,1) ( 0 , 2 , 1 )
e 2 = f 2 ∣ ∣ f 2 ∣ ∣ = ( 0 , 2 , 1 ) √ 5 e_2=\frac{f_2}{||f_2||}=\frac{(0,2,1)}{√5} e 2 = ∣∣ f 2 ∣∣ f 2 = √5 ( 0 , 2 , 1 )
e 2 = ( 0 √ 5 , 2 √ 5 , 1 √ 5 ) e_2=(\frac{0}{√5},\frac{2}{√5},\frac{1}{√5}) e 2 = ( √5 0 , √5 2 , √5 1 )
f 3 = ( 1 , 2 , 2 ) − [ ( 1 , 2 , 2 ) . ( 1 , 2 , 2 ) ] ( 1 , 0 , 0 ) f_3=(1,2,2)-[(1,2,2).(1,2,2)](1,0,0) f 3 = ( 1 , 2 , 2 ) − [( 1 , 2 , 2 ) . ( 1 , 2 , 2 )] ( 1 , 0 , 0 )
− [ ( 1 , 2 , 2 ) . ( 0 , 2 , 1 ) ] ( 0 , 2 , 1 ) -[(1,2,2).(0,2,1)](0,2,1) − [( 1 , 2 , 2 ) . ( 0 , 2 , 1 )] ( 0 , 2 , 1 )
= ( 0 , − 2 5 , 4 5 ) =(0,-\frac{2}{5},\frac{4}{5}) = ( 0 , − 5 2 , 5 4 )
( 0 , − 2 5 , 4 5 ) ∣ ∣ f 3 ∣ ∣ \frac{(0,\frac{-2}{5},\frac{4}{5})}{||f_3||} ∣∣ f 3 ∣∣ ( 0 , 5 − 2 , 5 4 )
=( 0 , − 2 5 , 4 5 ) 2 √ 5 5 \frac{(0,\frac{-2}{5},\frac{4}{5})}{\frac{2√5}{5}} 5 2√5 ( 0 , 5 − 2 , 5 4 )
e 3 =( 0 , − 1 √ 5 , 2 √ 5 ) (0,\frac{-1}{√5},\frac{2}{√5}) ( 0 , √5 − 1 , √5 2 )
Part 2
u-v=(1-1, 2- -2, 2- -1)=(0,4,3)
||u-v||= 4 2 + 3 2 = 5 \sqrt{\smash[b]{4^2+3^2}}=5 4 2 + 3 2 = 5
Part 3
<u+v, u-v> = ||u||2 - 2 ||u|| ||v|| +||v||2
= 42 - 2(4)(3) +32
= 1
Part 4
let u u u = x ( 1 0 0 ) x\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix} x ⎝ ⎛ 1 0 0 ⎠ ⎞ + y ( 0 1 √ 2 1 √ 2 ) + y\begin{pmatrix}
0 \\
\frac{1}{√2} \\
\frac {1}{√2}
\end{pmatrix} + y ⎝ ⎛ 0 √2 1 √2 1 ⎠ ⎞
= ( x y √ 2 y √ 2 ) =\begin{pmatrix}
x \\
\frac {y}{√2}\\
\frac {y}{√2}
\end{pmatrix} = ⎝ ⎛ x √2 y √2 y ⎠ ⎞
∣ ∣ ( x , y √ 2 , y √ 2 ) − ( 2 , 4 , 6 ) ∣ ∣ ||(x,\frac {y}{√2},\frac {y}{√2}) -(2,4,6)|| ∣∣ ( x , √2 y , √2 y ) − ( 2 , 4 , 6 ) ∣∣
i s m i n i m u m is \> minimum i s minim u m
( x − 2 ) 2 + ( y √ 2 − 4 ) 2 + ( y √ 2 − 6 ) 2 (x-2)^2+(\frac{y}{√2}-4)^2+(\frac {y}{√2}-6)^2 ( x − 2 ) 2 + ( √2 y − 4 ) 2 + ( √2 y − 6 ) 2 i s m i n i m u m is \> minimum i s minim u m
x 2 − 4 x + y 2 − 20 y √ 2 + 56 x^2-4x+y^2-\frac{20y}{√2}+
\>56 x 2 − 4 x + y 2 − √2 20 y + 56 i s m i n i m u m \>is \> minimum i s minim u m
d d x ( x 2 − 4 x ) = 0 \frac{d}{dx}(x^2-4x)=0 d x d ( x 2 − 4 x ) = 0
⟹ 2 x − 4 = 0 x = 2 \implies 2x-4=0\quad x=2 ⟹ 2 x − 4 = 0 x = 2
d d y ( y 2 − 20 y √ 2 ) = 0 \frac {d}{dy}(y^2-\frac{20y}{√2})=0 d y d ( y 2 − √2 20 y ) = 0
2 y − 20 √ 2 = 0 ⟹ y = 10 √ 2 2y-\frac {20}{√2}=0\implies\>y=\frac{10}{√2} 2 y − √2 20 = 0 ⟹ y = √2 10
Substituting the value of x a n d y i n u x \>and \>y \>in \>u x an d y in u
u = [ 2 5 5 ] u=\begin{bmatrix}
2 \\
5 \\
5
\end{bmatrix} u = ⎣ ⎡ 2 5 5 ⎦ ⎤
Part 5
Transforming matrix T T T ;
( 2 x x + y x − z ) \begin{pmatrix}
2x \\
x+y \\
x-z
\end{pmatrix} ⎝ ⎛ 2 x x + y x − z ⎠ ⎞ =x ( 2 1 1 ) x\begin{pmatrix}
2\\
1\\
1
\end{pmatrix} x ⎝ ⎛ 2 1 1 ⎠ ⎞ + y ( 0 1 0 ) +y\begin{pmatrix}
0 \\
1\\
0
\end{pmatrix} + y ⎝ ⎛ 0 1 0 ⎠ ⎞ +z z z
( 0 0 − 1 ) \begin{pmatrix}
0 \\
0\\
-1
\end{pmatrix} ⎝ ⎛ 0 0 − 1 ⎠ ⎞
T = ( 2 0 0 1 1 0 1 0 − 1 ) T=\begin{pmatrix}
2& 0&0\\
1&1 & 0\\
1&0&-1
\end{pmatrix} T = ⎝ ⎛ 2 1 1 0 1 0 0 0 − 1 ⎠ ⎞
T ∗ = T T = ( 2 1 1 0 1 0 0 0 − 1 ) T^*=T^T=\begin{pmatrix}
2&1 & 1 \\
0&1& 0\\
0&0&-1
\end{pmatrix} T ∗ = T T = ⎝ ⎛ 2 0 0 1 1 0 1 0 − 1 ⎠ ⎞
( 2 1 1 0 1 0 0 0 − 1 ) ( u v w ) \begin{pmatrix}
2&1& 1\\
0&1 & 0\\
0&0&-1
\end{pmatrix}\begin{pmatrix}
u \\
v\\
w
\end{pmatrix} ⎝ ⎛ 2 0 0 1 1 0 1 0 − 1 ⎠ ⎞ ⎝ ⎛ u v w ⎠ ⎞ =
( 2 u + v + w v − w ) \begin{pmatrix}
2u+v+w \\
v \\
-w
\end{pmatrix} ⎝ ⎛ 2 u + v + w v − w ⎠ ⎞
Therefore the adjoint operator T ∗ ( u , v , w ) T^*(u,v,w) T ∗ ( u , v , w )
= ( 2 u + v + w , u , − w ) =(2u+v+w,u,-w) = ( 2 u + v + w , u , − w )
Comments