Answer:-
1.
The dimension of a nonzero subspace S, is the number of vectors in any basis for S.
Consider the vectors:
v 1 = ( 1 , 1 , 0 , 0 , 0 ) , v 2 = ( 0 , 0 , 3 , 1 , 1 ) v_1=(1,1,0,0,0),v_2=(0,0,3,1,1) v 1 = ( 1 , 1 , 0 , 0 , 0 ) , v 2 = ( 0 , 0 , 3 , 1 , 1 )
vectors v1 and v2 are in S, and are linearly independent. So, the dimension of S is 2.
2.
T ( x , y , z ) = x ( 1 , 1 , 1 ) + y ( 1 , − 1 , 0 ) + z ( 0 , 0 , 2 ) T(x,y,z)=x(1,1,1)+y(1,-1,0)+z(0,0,2) T ( x , y , z ) = x ( 1 , 1 , 1 ) + y ( 1 , − 1 , 0 ) + z ( 0 , 0 , 2 )
basis: ( 1 , 1 , 1 ) , ( 1 , − 1 , 0 ) , ( 0 , 0 , 2 ) (1,1,1),(1,-1,0),(0,0,2) ( 1 , 1 , 1 ) , ( 1 , − 1 , 0 ) , ( 0 , 0 , 2 )
3.
i)
let a ( u 1 , v 1 , w 1 ) , b ( u 2 , v 2 , w 2 ) a(u_1,v_1,w_1),b(u_2,v_2,w_2) a ( u 1 , v 1 , w 1 ) , b ( u 2 , v 2 , w 2 ) , then:
T 1 ( a + b ) = ( u 1 + u 2 − ( v 1 + v 2 ) + 2 ( w 1 + w 2 ) , 5 ( v 1 + v 2 ) − ( w 1 + w 2 ) ) = T_1(a+b)=(u_1+u_2-(v_1+v_2)+2(w_1+w_2),5(v_1+v_2)-(w_1+w_2))= T 1 ( a + b ) = ( u 1 + u 2 − ( v 1 + v 2 ) + 2 ( w 1 + w 2 ) , 5 ( v 1 + v 2 ) − ( w 1 + w 2 )) =
= ( u 1 − v 1 + 2 w 1 , 5 v 1 − w 1 ) + ( u 2 − v 2 + 2 w 2 , 5 v 2 − w 2 ) = T 1 ( a ) + T 1 ( b ) =(u_1-v_1+2w_1,5v_1-w_1)+(u_2-v_2+2w_2,5v_2-w_2)=T_1(a)+T_1(b) = ( u 1 − v 1 + 2 w 1 , 5 v 1 − w 1 ) + ( u 2 − v 2 + 2 w 2 , 5 v 2 − w 2 ) = T 1 ( a ) + T 1 ( b )
T 1 ( c a ) = T 1 ( c u 1 , c v 1 , c w 1 ) = ( c u 1 − c v 1 + 2 c w 1 , 5 c v 1 − c w 1 ) = T_1(ca)=T_1(cu_1,cv_1,cw_1)=(cu_1-cv_1+2cw_1,5cv_1-cw_1)= T 1 ( c a ) = T 1 ( c u 1 , c v 1 , c w 1 ) = ( c u 1 − c v 1 + 2 c w 1 , 5 c v 1 − c w 1 ) =
= c ( u 1 − v 1 + 2 w 1 , 5 v 1 − w 1 ) = c T 1 ( a ) =c(u_1-v_1+2w_1,5v_1-w_1)=cT_1(a) = c ( u 1 − v 1 + 2 w 1 , 5 v 1 − w 1 ) = c T 1 ( a )
So, T1 is linear transformation.
ii)
∫ a 1 + a 2 b 1 + b 2 2 p ( x ) d x ≠ ∫ a 1 b 1 2 p ( x ) d x + ∫ a 2 b 2 2 p ( x ) d x \displaystyle{\int^{b_1+b_2}_{a_1+a_2}}2p(x)dx\neq \displaystyle{\int^{b_1}_{a_1}}2p(x)dx+\displaystyle{\int^{b_2}_{a_2}}2p(x)dx ∫ a 1 + a 2 b 1 + b 2 2 p ( x ) d x = ∫ a 1 b 1 2 p ( x ) d x + ∫ a 2 b 2 2 p ( x ) d x
T2 is not linear transformation.
iii)
( u 1 + u 2 ) p ( u 1 + u 2 ) + ( u 1 + u 2 ) ≠ u 1 p ( u 1 ) + u 1 + u 2 p ( u 2 ) + u 2 (u_1+u_2)p(u_1+u_2)+(u_1+u_2)\neq u_1p(u_1)+u_1+u_2p(u_2)+u_2 ( u 1 + u 2 ) p ( u 1 + u 2 ) + ( u 1 + u 2 ) = u 1 p ( u 1 ) + u 1 + u 2 p ( u 2 ) + u 2
T2 is not linear transformation.
4.
u+v=0
u+2u=0
Ker(T)=(0,0)
5.
by the rank-nullity theorem:
6 = d i m ( K e r ( T ) ) + d i m ( I m ( T ) ) 6=dim(Ker(T))+dim(Im(T)) 6 = d im ( Ker ( T )) + d im ( I m ( T ))
So, dim range T= 6-dim(Ker(T))=6-2=4
6.
∣ 5 − λ − 3 − 6 2 − λ ∣ = 0 \begin{vmatrix}
5-\lambda & -3 \\
-6 & 2-\lambda
\end{vmatrix}=0 ∣ ∣ 5 − λ − 6 − 3 2 − λ ∣ ∣ = 0
10 − 7 λ + λ 2 − 18 = 0 10-7\lambda+\lambda^2-18=0 10 − 7 λ + λ 2 − 18 = 0
λ 1 = 7 − 49 + 32 2 = − 1 \lambda_1=\frac{7-\sqrt{49+32}}{2}=-1 λ 1 = 2 7 − 49 + 32 = − 1
λ 2 = 8 \lambda_2=8 λ 2 = 8
for λ 1 \lambda_1 λ 1 :
6 x − 3 y = 0 6x-3y=0 6 x − 3 y = 0
y = 2 x y=2x y = 2 x
x 1 = ( 1 2 ) x_1=\begin{pmatrix}
1 \\
2
\end{pmatrix} x 1 = ( 1 2 )
for λ 2 \lambda_2 λ 2 :
− 3 x − 3 y = 0 -3x-3y=0 − 3 x − 3 y = 0
x = − y x=-y x = − y
x 2 = ( 1 − 1 ) x_2=\begin{pmatrix}
1 \\
-1
\end{pmatrix} x 2 = ( 1 − 1 )
P = ( 1 1 2 − 1 ) P=\begin{pmatrix}
1& 1 \\
2& -1
\end{pmatrix} P = ( 1 2 1 − 1 )
Comments