2. Use Cayley-Hamilton theorem to find A6 − 5A5 + 8A4 − 2A3 − 9A2 + 31A − 36I,
when A=
1 0 3
2 1 −1
1 −1 1
Find the characteristic polynomial of the matrix A:
pA(λ)=det∣1−λ0321−λ−11−11−λ∣=(1−λ)3−6−4(1−λ)p_A(\lambda)=\det\begin{vmatrix} 1-\lambda & 0 & 3\\ 2 & 1-\lambda & -1\\ 1 & -1 & 1-\lambda \end{vmatrix}=(1-\lambda)^3-6-4(1-\lambda)pA(λ)=det∣∣1−λ2101−λ−13−11−λ∣∣=(1−λ)3−6−4(1−λ)
−pA(λ)=λ3−3λ2−λ+9-p_A(\lambda)=\lambda^3-3\lambda^2-\lambda+9−pA(λ)=λ3−3λ2−λ+9
Cayley-Hamilton theorem claims that pA(A)=0p_A(A)=0pA(A)=0, that is, A3−3A2−A+9I=0A^3-3A^2-A+9I=0A3−3A2−A+9I=0.
Let's divide A6−5A5+8A4−2A3−9A2+31A−36IA^6 − 5A^5 + 8A^4 − 2A^3 − 9A^2 + 31A − 36IA6−5A5+8A4−2A3−9A2+31A−36I by A3−3A2−A+9IA^3-3A^2-A+9IA3−3A2−A+9I with remainder. We obtain:
A6−5A5+8A4−2A3−9A2+31A−36I=A^6 − 5A^5 + 8A^4 − 2A^3 − 9A^2 + 31A − 36I=A6−5A5+8A4−2A3−9A2+31A−36I=
=(A3−3A2−A+9I)(A3−22+3A−4I)=0=(A^3-3A^2-A+9I)(A^3 − 2^2 + 3A − 4I)=0=(A3−3A2−A+9I)(A3−22+3A−4I)=0
Answer. 0.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments