Answer to Question #248541 in Linear Algebra for chaitu

Question #248541

2. Use Cayley-Hamilton theorem to find A6 − 5A5 + 8A4 − 2A3 − 9A2 + 31A − 36I,

when A=

1 0 3

2 1 −1

1 −1 1


1
Expert's answer
2021-10-11T09:53:43-0400

Find the characteristic polynomial of the matrix A:

pA(λ)=det1λ0321λ1111λ=(1λ)364(1λ)p_A(\lambda)=\det\begin{vmatrix} 1-\lambda & 0 & 3\\ 2 & 1-\lambda & -1\\ 1 & -1 & 1-\lambda \end{vmatrix}=(1-\lambda)^3-6-4(1-\lambda)

pA(λ)=λ33λ2λ+9-p_A(\lambda)=\lambda^3-3\lambda^2-\lambda+9

Cayley-Hamilton theorem claims that pA(A)=0p_A(A)=0, that is, A33A2A+9I=0A^3-3A^2-A+9I=0.

Let's divide A65A5+8A42A39A2+31A36IA^6 − 5A^5 + 8A^4 − 2A^3 − 9A^2 + 31A − 36I by A33A2A+9IA^3-3A^2-A+9I with remainder. We obtain:

A65A5+8A42A39A2+31A36I=A^6 − 5A^5 + 8A^4 − 2A^3 − 9A^2 + 31A − 36I=

=(A33A2A+9I)(A322+3A4I)=0=(A^3-3A^2-A+9I)(A^3 − 2^2 + 3A − 4I)=0


Answer. 0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment