Question #248001

4.) True or False : 3Z = Z + Z + Z when Z is a matrix.

􏰀1 2􏰁 􏰀a􏰁

5.) Let X = 3 4 ; E = b

Find each of the following. If the operation cannot be done : state undefined operation.

a) XE

b) EX

c) XT X where XT stands for the transpose of X


10.) Consider the linear equation 2a + 3b = 4

Is (a; b) = ( 1/2 ; 1) a solution to the equation? Motivate your answer.


11.) Look up what is meant by a system of linear equations.

A known fact of solutions of systems of linear equations is that only one the following options can hold :

(a) No solution possible

(b) A unique solution can be found

(c) The system has infinite solutions.

Consider that two straight lines form a linear system.

Interpret what happens geometrically to the straight lines to get each case of the solution types given above.


12.) Look up the concept of a homogeneous linear system.

Only two solution types of the three mentioned solution types above are possible. Which one can never happen and why.


1
Expert's answer
2021-10-07T15:32:59-0400

4)

Let


Z=(a11a12...a1ma21a22...a2man1an2...anm)Z=\begin{pmatrix} a_{11} & a_{12} & ... & a_{1m} \\ a_{21} & a_{22} & ... & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & ... & a_{nm} \\ \end{pmatrix}

Then


3Z=(3a113a12...3a1m3a213a22...3a2m3an13an2...3anm)3Z=\begin{pmatrix} 3a_{11} & 3a_{12} & ... & 3a_{1m} \\ 3a_{21} & 3a_{22} & ... & 3a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ 3a_{n1} & 3a_{n2} & ... & 3a_{nm} \\ \end{pmatrix}

Z+Z+Z=(a11a12...a1ma21a22...a2man1an2...anm)Z+Z+Z=\begin{pmatrix} a_{11} & a_{12} & ... & a_{1m} \\ a_{21} & a_{22} & ... & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & ... & a_{nm} \\ \end{pmatrix}

+(a11a12...a1ma21a22...a2man1an2...anm)+(a11a12...a1ma21a22...a2man1an2...anm)+\begin{pmatrix} a_{11} & a_{12} & ... & a_{1m} \\ a_{21} & a_{22} & ... & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & ... & a_{nm} \\ \end{pmatrix}+\begin{pmatrix} a_{11} & a_{12} & ... & a_{1m} \\ a_{21} & a_{22} & ... & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & ... & a_{nm} \\ \end{pmatrix}

=(a11+a11+a11a12+a12+a12...a1m+a1m+a1ma21+a21+a21a22+a22+a22...a2m+a2m+a2man1+an1+an1an2+an2+an2...anm+anm+anm)=\begin{pmatrix} a_{11}+a_{11}+a_{11} & a_{12}+a_{12}+a_{12} & ... & a_{1m}+a_{1m}+a_{1m} \\ a_{21}+a_{21}+a_{21} & a_{22}+a_{22}+a_{22} & ... & a_{2m} +a_{2m}+a_{2m}\\ \vdots & \vdots & \vdots & \vdots \\ a_{n1}+a_{n1}+a_{n1} & a_{n2}+a_{n2}+a_{n2} & ... & a_{nm}+a_{nm}+a_{nm} \\ \end{pmatrix}


=(3a113a12...3a1m3a213a22...3a2m3an13an2...3anm)=3Z=\begin{pmatrix} 3a_{11} & 3a_{12} & ... & 3a_{1m} \\ 3a_{21} & 3a_{22} & ... & 3a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ 3a_{n1} & 3a_{n2} & ... & 3a_{nm} \\ \end{pmatrix}=3Z

3Z=Z+Z+Z3Z = Z + Z + Z when ZZ is a matrix is True.


5)


X=(1234),E=(ab)X=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, E=\begin{pmatrix} a \\ b \end{pmatrix}

a)

XE=(1234)(ab)=(a+2b3a+4b)XE=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\begin{pmatrix} a \\ b \end{pmatrix}=\begin{pmatrix} a +2b \\ 3a+4b \end{pmatrix}

b)

The matrix EE is 2×12\times1 matrix, the matrix XX is 2×22\times2 matrix.

Since 12,1\not=2, then


EX=(ab)(1234)=does not existEX=\begin{pmatrix} a \\ b \end{pmatrix}\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}=does\ not\ exist

c)


XT=(1324)X^T=\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}

XTX=(1324)(1234)=(1+92+122+124+16)X^TX=\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}=\begin{pmatrix} 1+9 & 2+12 \\ 2+12 & 4+16 \end{pmatrix}

=(10141420)=\begin{pmatrix} 10 & 14 \\ 14 & 20 \end{pmatrix}

10.) Consider the linear equation

2a+3b=42a + 3b = 4

If (a,b)=(12,1),(a, b)=(\dfrac{1}{2}, 1), then substitute


2(12)+3(1)=42(\dfrac{1}{2}) + 3(1) = 4

4=4,True4=4, True

Therefore (a,b)=(12,1)(a, b)=(\dfrac{1}{2}, 1) is a solution to the equation 2a+3b=1.2a+3b=1.


11)

a) Two lines are parallel lines or skew lines.


b) Two lines are intersecting lines.


c) Two lines are coincident lines.


12) Since a homogeneous system always has a solution (the trivial solution), it can never be inconsistent.

Therefore a homogeneous linear system can have:

(a) A unique solution.

Or

(c) Infinite solutions.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS