Question #247489
Consider K = 1 −1 1 −1 then we get K2 = 0 Does this hold for real numbers? Motivate.
1
Expert's answer
2021-10-06T17:42:35-0400

If ab=0, either a=0 or b=0

-Products of two non-zero numbers is always non-zero

But products of two non-zero matrices can be zero matrix


Using K given above


K=[11;11]\begin{bmatrix} 1&-1&;&1&-1 \end{bmatrix}


That is K(1111)\begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}

K2=(K)(K)


=(1111)\begin{pmatrix} 1 & -1 \\ 1& -1 \end{pmatrix} (1111)\begin{pmatrix} 1 & -1\\ 1 & -1 \end{pmatrix}


(1×1+1×11×1+1×11×1+1×11×1+1×1)\begin{pmatrix} 1×1+-1×1 & 1×-1+-1×-1\\ 1×1+-1×1 & 1×-1+-1×-1 \end{pmatrix}



=(0000)\begin{pmatrix} 0 & 0\\ 0& 0 \end{pmatrix}


=0 (Null matrix)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS