Question #245492

Consider the following System of equations:

3𝑥 + 2𝑦 + 𝑧 = 3

2𝑥 + 𝑦 + 𝑧 = 0

6𝑥 + 2𝑦 + 4𝑧 = 6

a. Apply Gaussian elimination method to reduce the system to triangular form.

b. What do you observe from your answer in part (a) above?


1
Expert's answer
2021-10-04T14:14:10-0400

a.

Augmented matrix is


(321321106246)\begin{pmatrix} 3 & 2 & 1 & & 3 \\ 2 & 1 & 1 & & 0 \\ 6 & 2 & 4 & & 6 \\ \end{pmatrix}

R1=R1/3R_1=R_1/3


(12/31/3121106246)\begin{pmatrix} 1 & 2/3 & 1/3 & & 1 \\ 2 & 1 & 1 & & 0 \\ 6 & 2 & 4 & & 6 \\ \end{pmatrix}

R2=R22R1R_2=R_2-2R_1


(12/31/3101/31/326246)\begin{pmatrix} 1 & 2/3 & 1/3 & & 1 \\ 0& -1/3 & 1/3 & & -2\\ 6 & 2 & 4 & & 6 \\ \end{pmatrix}

R3=R36R1R_3=R_3-6R_1


(12/31/3101/31/320220)\begin{pmatrix} 1 & 2/3 & 1/3 & & 1 \\ 0& -1/3 & 1/3 & & -2\\ 0 & -2 & 2 & & 0 \\ \end{pmatrix}

R2=3R2R_2=-3R_2


(12/31/3101160220)\begin{pmatrix} 1 & 2/3 & 1/3 & & 1 \\ 0 & 1 & -1 & & 6\\ 0 & -2 & 2 & & 0 \\ \end{pmatrix}

R1=R12R2/3R_1=R_1-2R_2/3


(101301160220)\begin{pmatrix} 1 & 0 & 1 & & -3\\ 0 & 1 & -1 & & 6\\ 0 & -2 & 2 & & 0 \\ \end{pmatrix}

R3=R3+2R2R_3=R_3+2R_2


(1013011600012)\begin{pmatrix} 1 & 0 & 1 & & -3\\ 0 & 1 & -1 & & 6\\ 0 & 0 & 0 & & 12 \\ \end{pmatrix}

R3=R3/12R_3=R_3/12


(101301160001)\begin{pmatrix} 1 & 0 & 1 & & -3\\ 0 & 1 & -1 & & 6\\ 0 & 0 & 0 & & 1 \\ \end{pmatrix}

R1=R1+3R3R_1=R_1+3R_3


(101001160001)\begin{pmatrix} 1 & 0 & 1 & & 0\\ 0 & 1 & -1 & & 6\\ 0 & 0 & 0 & & 1 \\ \end{pmatrix}

R2=R26R3R_2=R_2-6R_3


(101001100001)\begin{pmatrix} 1 & 0 & 1 & & 0\\ 0 & 1 & -1 & & 0\\ 0 & 0 & 0 & & 1 \\ \end{pmatrix}

b. The system is inconsistent. The given system has no solution.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS