Given matrix is A=⎣⎡201111102⎦⎤
Then according to Cayley Hamilton theorem,
∣A−λI∣=0
So we will have,
A−λI=⎣⎡201111102⎦⎤−λ⎣⎡100010001⎦⎤
∣A−λI∣=∣∣2−λ0111−λ1102−λ∣∣=0
Then equation will be
λ3−5λ2+7λ−3=0
According to Cayley Hamilton theorem,
Every matrix is the root of it's eigen matrix.
then, A3−5A2+7A−3=0 (1)
Given equation is A8−5A7+7A6−3A5+A4−5A3+8A2−2A+I
This equation can be written as,
A8−5A7+7A6−3A5+A4−5A3+8A2−2A+I=(A3−5A2+7A−3)(A5+A)+(A2+A+I)
From equation (1), above equation will be modified as,
A8−5A7+7A6−3A5+A4−5A3+8A2−2A+I=A2+A+I
So putting value of A2,A,I
we will get,
A8−5A7+7A6−3A5+A4−5A3+8A2−2A+I
=⎣⎡504414405⎦⎤+⎣⎡201111102⎦⎤+⎣⎡100010001⎦⎤=⎣⎡805535508⎦⎤
Comments