Question #218715

et T : R3 —> R2 be given by : T (x1, x2, ,X3 = (x1 +x2 + X3, X2 + X3 ). Prove that T is a linear transformation. Also find the rank and nullity of T. 


1
Expert's answer
2021-07-20T17:54:38-0400

Solution;

To prove that T is a linear transformation,we have to show that it preserves vector addition and scalar multiplication.

Let (x1,x2,x3),(y1,y2,y3)(x_1,x_2,x_3),(y_1,y_2,y_3) ϵR3\epsilon R^3

and a,b are scalar quantities such that ;

a(x1,x2,x3)+b(y2,y2,y3)=(ax1+by1,ax2+by2,ax3+by3)a(x_1,x_2,x_3)+b(y_2,y_2,y_3)=(ax_1+by_1,ax_2+by_2,ax_3+by_3)

Hence;[a(x1,x2,x3)+b(y1,y2,y3)]=T(ax1+by1,ax2+by2,ax3+by3)[a(x_1,x_2,x_3)+b(y_1,y_2,y_3)]=T(ax_1+by_1,ax_2+by_2,ax_3+by_3)=((ax1+by1+ax2+by2+ax3+by3),(ax2+by2+ax3+by3))((ax_1+by_1+ax_2+by_2+ax_3+by_3),(ax_2+by_2+ax_3+by_3))

=(a(x1+x2+x3)+b(y1+y2+y3)),a(x2+x3)+b(y2+y3))=(a(x_1+x_2+x_3)+b(y_1+y_2+y_3)),a(x_2+x_3)+b(y_2+y_3))

=a(x1+x2+x3,x2+x3)+b(y1+y2+y3,y2+y3)=a(x_1+x_2+x_3,x_2+x_3)+b(y_1+y_2+y_3,y_2+y_3)

=aT(x1,x2,x3)+bT(y1,y2,y3)aT(x_1,x_2,x_3)+bT(y_1,y_2,y_3)

Therefore T is a linear transformation.

To find Rank and nullity,

Write the coefficient matrix of the transformation,

T[111]T\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} =[111011]\begin{bmatrix} 1&1& 1\\ 0 & 1&1 \end{bmatrix}

The reduced row achelon form is;

[100011]\begin{bmatrix} 1 & 0&0\\ 0 & 1&1 \end{bmatrix}

The rank of the transformation is equal to the number of non- zero rows;

Rank(T)=2

Nullity of T can be found using the Rank Nullity theorem;

Nullity(T)=Domain(T)-Rank(T)=3-2=1



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS