Solution;
To prove that T is a linear transformation,we have to show that it preserves vector addition and scalar multiplication.
Let ( x 1 , x 2 , x 3 ) , ( y 1 , y 2 , y 3 ) (x_1,x_2,x_3),(y_1,y_2,y_3) ( x 1 , x 2 , x 3 ) , ( y 1 , y 2 , y 3 ) ϵ R 3 \epsilon R^3 ϵ R 3
and a,b are scalar quantities such that ;
a ( x 1 , x 2 , x 3 ) + b ( y 2 , y 2 , y 3 ) = ( a x 1 + b y 1 , a x 2 + b y 2 , a x 3 + b y 3 ) a(x_1,x_2,x_3)+b(y_2,y_2,y_3)=(ax_1+by_1,ax_2+by_2,ax_3+by_3) a ( x 1 , x 2 , x 3 ) + b ( y 2 , y 2 , y 3 ) = ( a x 1 + b y 1 , a x 2 + b y 2 , a x 3 + b y 3 )
Hence;[ a ( x 1 , x 2 , x 3 ) + b ( y 1 , y 2 , y 3 ) ] = T ( a x 1 + b y 1 , a x 2 + b y 2 , a x 3 + b y 3 ) [a(x_1,x_2,x_3)+b(y_1,y_2,y_3)]=T(ax_1+by_1,ax_2+by_2,ax_3+by_3) [ a ( x 1 , x 2 , x 3 ) + b ( y 1 , y 2 , y 3 )] = T ( a x 1 + b y 1 , a x 2 + b y 2 , a x 3 + b y 3 ) =( ( a x 1 + b y 1 + a x 2 + b y 2 + a x 3 + b y 3 ) , ( a x 2 + b y 2 + a x 3 + b y 3 ) ) ((ax_1+by_1+ax_2+by_2+ax_3+by_3),(ax_2+by_2+ax_3+by_3)) (( a x 1 + b y 1 + a x 2 + b y 2 + a x 3 + b y 3 ) , ( a x 2 + b y 2 + a x 3 + b y 3 ))
= ( a ( x 1 + x 2 + x 3 ) + b ( y 1 + y 2 + y 3 ) ) , a ( x 2 + x 3 ) + b ( y 2 + y 3 ) ) =(a(x_1+x_2+x_3)+b(y_1+y_2+y_3)),a(x_2+x_3)+b(y_2+y_3)) = ( a ( x 1 + x 2 + x 3 ) + b ( y 1 + y 2 + y 3 )) , a ( x 2 + x 3 ) + b ( y 2 + y 3 ))
= a ( x 1 + x 2 + x 3 , x 2 + x 3 ) + b ( y 1 + y 2 + y 3 , y 2 + y 3 ) =a(x_1+x_2+x_3,x_2+x_3)+b(y_1+y_2+y_3,y_2+y_3) = a ( x 1 + x 2 + x 3 , x 2 + x 3 ) + b ( y 1 + y 2 + y 3 , y 2 + y 3 )
=a T ( x 1 , x 2 , x 3 ) + b T ( y 1 , y 2 , y 3 ) aT(x_1,x_2,x_3)+bT(y_1,y_2,y_3) a T ( x 1 , x 2 , x 3 ) + b T ( y 1 , y 2 , y 3 )
Therefore T is a linear transformation.
To find Rank and nullity,
Write the coefficient matrix of the transformation,
T [ 1 1 1 ] T\begin{bmatrix}
1\\
1\\
1
\end{bmatrix} T ⎣ ⎡ 1 1 1 ⎦ ⎤ =[ 1 1 1 0 1 1 ] \begin{bmatrix}
1&1& 1\\
0 & 1&1
\end{bmatrix} [ 1 0 1 1 1 1 ]
The reduced row achelon form is;
[ 1 0 0 0 1 1 ] \begin{bmatrix}
1 & 0&0\\
0 & 1&1
\end{bmatrix} [ 1 0 0 1 0 1 ]
The rank of the transformation is equal to the number of non- zero rows;
Rank(T)=2
Nullity of T can be found using the Rank Nullity theorem;
Nullity(T)=Domain(T)-Rank(T)=3-2=1
Comments