z=1+λi1−λi=(1+λi)2(1−λi)(1+λi)=1+2λi−λ21+λ2=1−λ21+λ2+2λ1+λ2iz=\frac{1+\lambda i}{1-\lambda i} =\frac{(1+\lambda i)^2}{(1-\lambda i)(1+\lambda i)}=\frac{1+2\lambda i-\lambda ^2 }{1+\lambda ^2 }= \frac{1-\lambda^2}{1+\lambda ^2}+\frac{2\lambda }{1+\lambda^2}iz=1−λi1+λi=(1−λi)(1+λi)(1+λi)2=1+λ21+2λi−λ2=1+λ21−λ2+1+λ22λi
If λ\lambdaλ is a real number, then Re z=1−λ21+λ2=0\text{Re} \ z=\frac{1-\lambda^2}{1+\lambda^2}=0Re z=1+λ21−λ2=0
1−λ2=01-\lambda^2=01−λ2=0
λ2=1\lambda^2=1λ2=1
λ=±1\lambda=\pm 1λ=±1
Answer: λ=±1.\lambda =\pm1.λ=±1.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment