Answer to Question #218690 in Linear Algebra for Tshego

Question #218690
Determine for which value (s) of λ the real part of z =1+λi /1- λi equals zero
1
Expert's answer
2021-07-21T06:58:46-0400

z=1+λi1λi=(1+λi)2(1λi)(1+λi)=1+2λiλ21+λ2=1λ21+λ2+2λ1+λ2iz=\frac{1+\lambda i}{1-\lambda i} =\frac{(1+\lambda i)^2}{(1-\lambda i)(1+\lambda i)}=\frac{1+2\lambda i-\lambda ^2 }{1+\lambda ^2 }= \frac{1-\lambda^2}{1+\lambda ^2}+\frac{2\lambda }{1+\lambda^2}i

If λ\lambda is a real number, then Re z=1λ21+λ2=0\text{Re} \ z=\frac{1-\lambda^2}{1+\lambda^2}=0


1λ2=01-\lambda^2=0

λ2=1\lambda^2=1

λ=±1\lambda=\pm 1


Answer: λ=±1.\lambda =\pm1.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment