"\\text{Given the matrix \\(A\\) to find the Eigenvalues we have the following:}\\\\\n{\\rm det}(A - \\lambda I) = 0\\\\\n\\implies \\begin{vmatrix}- \\lambda & 1 & 1\\\\3 & - \\lambda - 4 & -3\\\\-5 & 7 & 6 - \\lambda\\end{vmatrix}\\ = 0 \\\\\n\\text{Add column }2\\text{ multiplied by \u03bb to column 1:} C_{1} = C_{1} + \\lambda C_{2}\\\\\n\\left|\\begin{array}{ccc}- \\lambda & 1 & 1\\\\3 & - \\lambda - 4 & -3\\\\-5 & 7 & 6 - \\lambda\\end{array}\\right| = \\left|\\begin{array}{ccc}0 & 1 & 1\\\\- \\lambda \\left(\\lambda + 4\\right) + 3 & - \\lambda - 4 & -3\\\\7 \\lambda - 5 & 7 & 6 - \\lambda\\end{array}\\right| \\\\\n\\text{Subtract column }2\\text{ from column 3: } C_{3} = C_{3} - C_{2} \\\\\n\\left|\\begin{array}{ccc}0 & 1 & 1\\\\- \\lambda \\left(\\lambda + 4\\right) + 3 & - \\lambda - 4 & -3\\\\7 \\lambda - 5 & 7 & 6 - \\lambda\\end{array}\\right| = \\left|\\begin{array}{ccc}0 & 1 & 0\\\\- \\lambda \\left(\\lambda + 4\\right) + 3 & - \\lambda - 4 & \\lambda + 1\\\\7 \\lambda - 5 & 7 & - \\lambda - 1\\end{array}\\right| \\\\\n\\text{Expand along row 1:} \\\\\n\\left|\\begin{array}{ccc}0 & 1 & 0\\\\- \\lambda \\left(\\lambda + 4\\right) + 3 & - \\lambda - 4 & \\lambda + 1\\\\7 \\lambda - 5 & 7 & - \\lambda - 1\\end{array}\\right| = \\left(0\\right) \\left(-1\\right)^{1 + 1} \\left|\\begin{array}{cc}- \\lambda - 4 & \\lambda + 1\\\\7 & - \\lambda - 1\\end{array}\\right| + \\left(1\\right) \\left(-1\\right)^{1 + 2} \\left|\\begin{array}{cc}- \\lambda \\left(\\lambda + 4\\right) + 3 & \\lambda + 1\\\\7 \\lambda - 5 & - \\lambda - 1\\end{array}\\right| + \\left(0\\right) \\left(-1\\right)^{1 + 3} \\left|\\begin{array}{cc}- \\lambda \\left(\\lambda + 4\\right) + 3 & - \\lambda - 4\\\\7 \\lambda - 5 & 7\\end{array}\\right| = - \\left|\\begin{array}{cc}- \\lambda \\left(\\lambda + 4\\right) + 3 & \\lambda + 1\\\\7 \\lambda - 5 & - \\lambda - 1\\end{array}\\right| \\\\\n\\text{Note that: } \\\\\n\\left|\\begin{array}{cc}- \\lambda \\left(\\lambda + 4\\right) + 3 & \\lambda + 1\\\\7 \\lambda - 5 & - \\lambda - 1\\end{array}\\right| = \\left(- \\lambda \\left(\\lambda + 4\\right) + 3\\right)\\cdot \\left(- \\lambda - 1\\right) - \\left(\\lambda + 1\\right)\\cdot \\left(7 \\lambda - 5\\right) = \\lambda^{3} - 2 \\lambda^{2} - \\lambda + 2 \\\\\n\\text{Finally we have the following: } \\\\\n\\left(-1\\right)\\cdot \\left(\\lambda^{3} - 2 \\lambda^{2} - \\lambda + 2\\right) = - \\left(\\lambda - 2\\right) \\left(\\lambda - 1\\right) \\left(\\lambda + 1\\right).\\\\\n\\implies {\\rm det}(A - \\lambda I) = - \\left(\\lambda - 2\\right) \\left(\\lambda - 1\\right) \\left(\\lambda + 1\\right) =0 \\\\\n\\text{Solving this we have that: } \\lambda = -1, 1,2.\\\\\n\\therefore \\text{The eigenvalues of \\(A\\) are } \\lambda = -1, \\lambda = 1, \\lambda = 2\\\\\n\\text{We now fin the eigenvectors of the matrix. }\\\\\n1. \\text{For } \\lambda = 2:\\\\\n\\left[\\begin{array}{ccc}- \\lambda & 1 & 1\\\\3 & - \\lambda - 4 & -3\\\\-5 & 7 & 6 - \\lambda\\end{array}\\right] = \\left[\\begin{array}{ccc}-2 & 1 & 1\\\\3 & -6 & -3\\\\-5 & 7 & 4\\end{array}\\right]\\\\ \n\\text{The nullspace of this matrix is } \n\\left[\\begin{array}{c}\\frac{1}{3}\\\\- \\frac{1}{3}\\\\1\\end{array}\\right] \\text{which is the eigenvector.} \\\\\n2. \\text{For } \\lambda = 1:\\\\\n\\left[\\begin{array}{ccc}- \\lambda & 1 & 1\\\\3 & - \\lambda - 4 & -3\\\\-5 & 7 & 6 - \\lambda\\end{array}\\right] = \\left[\\begin{array}{ccc}-1 & 1 & 1\\\\3 & -5 & -3\\\\-5 & 7 & 5\\end{array}\\right]\\\\\n\\text{The nullspace for this matrix is: } \\left[\\begin{array}{c}1\\\\0\\\\1\\end{array}\\right] \\text{and this is the eigenvector} \\\\\n3. \\text{For }\\lambda = -1: \\\\\n\\left[\\begin{array}{ccc}- \\lambda & 1 & 1\\\\3 & - \\lambda - 4 & -3\\\\-5 & 7 & 6 - \\lambda\\end{array}\\right] = \\left[\\begin{array}{ccc}1 & 1 & 1\\\\3 & -3 & -3\\\\-5 & 7 & 7\\end{array}\\right] \\\\\n\\text{The nullspace of this matrix is } \\left[\\begin{array}{c}0\\\\-1\\\\1\\end{array}\\right] \\text{which is the eigenvector.}\\\\\n\\text{\\(A\\) is diagonalisable since each of the eigenvectors of \\(A\\) are linearly independent and they are distinct.}"
Comments
Leave a comment