Solution.
1a
Derive the 4th roots of W=-8i
Write the complex number in polar form
If W=a+bi=rcos"\\theta"Â +irsin"\\theta"
r="\\sqrt{a^2+b^2}=\\sqrt{0+(-8)^2}=8"
"\\theta=tan^-1(\\frac{-8 }0)=-\\frac\u03c02=-90^\u00b0"
W=8cos(-90°)+i8sin(-90°)
By De Moivres theorem,
W1/n=r1/n[cos"\\frac{(2\u03c0k+\\theta)}{n}+isin\\frac{(2\u03c0k+\\theta)}{n}]"
Where k=0,1,2...,n-1
1st root ,take k=0
"8^{\\frac 1 4}[cos(-22.5\u00b0)+isin(-22.5\u00b0)]=1.554-0.6436i"
2nd root ,take k=1
"8^\\frac1 4" [Cos(-22.5°+90°)+iSin(-22.5°+90°)]=0.6436+1.554i
3rd root ,take k=2
"8^\\frac14"[Cos(-22.5+180°)+iSin (-22.5°+180°)]=-1.554+0.6436i
4th root,take k=3
8"^\\frac14" [Cos(-22.5+270°)+iSin (-22.5°+270°)=-0.6436-1.554i
1b
De Moivres theorem;
"Cosn\\theta+iSin n\\theta=(cos\\theta+isin\\theta)^n"
Cos "4\\theta=Re(cos\\theta+iSin\\theta)^4)"
"Cos4\\theta=Re(Cos^4\\theta+4Cos^3\\theta(isin\\theta)+6cos^2\\theta(isin\\theta)^2+4cos\\theta(isin\\theta)^3+(isin\\theta)^4)"
"Cos4\\theta=cos^4\\theta-6cos^2\\theta sin^2\\theta+sin^4\\theta"
sin"5\\theta"
By De Moivre's Theorem;
"Cos5\\theta+isin5\\theta=(cos\\theta+isin\\theta)^5"
"Cos5\\theta"Â +"isin5\\theta"Â can now be expressed as;
"Cos5\\theta+isin5\\theta=cos^5\\theta+5cos^4\\theta isin\\theta+10cos^3\\theta i^2sin^2\\theta+10cos^2\\theta i^3sin^3\\theta+5cos\\theta i^4sin^4\\theta+i^5sin^5\\theta"
Group real parts and imaginary parts together;
"Cos5\\theta+isin5\\theta=(cos^5\\theta-10cos^3\\theta sin^2\\theta+5cos\\theta sin^4\\theta)+i (5cos^4\\theta sin\\theta-10cos^2\\theta sin^3\\theta+sin^5\\theta)"
Equate the imaginary parts of both sides together;
"isin5\\theta=i(5cos^4\\theta sin\\theta-10cos^2\\theta sin^3\\theta+sin^5\\theta)"
Divide out i
"Sin5\\theta=5cos^4\\theta sin\\theta-10cos^2\\theta sin^3\\theta+sin^5\\theta)"
1c
By De Moivre's Theorem;
zn+z-n=2cosn"\\theta"
Take n=1
2cos"\\theta"Â =z1+z-1
(2cos"\\theta"Â )6=(z1+z-1)6
(2cos"\\theta")6Â =z6+6z4+15z2+20+15z-2+6z-4+z-6
64cos6"\\theta"Â =(z6+z-6)+6(z4+z-4)+15(z2+z-2)+20
"64cos^6\\theta=2cos6\\theta+12cos4\\theta+30cos2\\theta+20"
Divide by 64;
"Cos^6\\theta=\\frac 2{32}cos6\\theta+\\frac3{16}cos4\\theta+\\frac{15}{32}cos2\\theta+\\frac5{16}"
1d
Find "Cos^3\\theta"
(2cos"\\theta")3=(z1+z-1)3=z3+3z1+3z-1+z-3
8cos3"\\theta"Â =(z3+z-3)+3(z1+z-1)
=2"cos3\\theta+6cos\\theta"
cos"^3\\theta=\\frac14cos3\\theta+\\frac34cos\\theta"
Find sin4"\\theta"
(2isin"\\theta"Â )4=(z-z-1)4=z4-4z2+6-4z-2+z-4
16sin"^4\\theta"Â ="2cos4\\theta-6cos2\\theta+6"
"Sin^4\\theta=\\frac18cos4\\theta-\\frac12cos2\\theta+\\frac38"
Therefore;
"cos^3\\theta sin^4\\theta="("\\frac14cos3\\theta+\\frac38cos\\theta)(\\frac18cos4\\theta-\\frac12cos2\\theta+\\frac38)"
Using the identity ;
CosAcosB="\\frac12"Â [Cos(A+B)+Cos(A-B)
Simplify.
"\\frac1{64}(cos7\\theta-cos5\\theta-3cos3\\theta+3cos\\theta)"
2a
"z =\\frac{z_1}{z_2} \\\\\nz_1 = tan \u03b8 + i \\\\\nz_2 = \\bar{z_1} = \\bar{(\\tan\\theta+i)}=tan \\theta -i\\\\\nz =\\frac{z_1}{z_2} =\\frac{tan \\theta +i}{tan \\theta -i}\\\\\nz =\\frac{tan \\theta +i}{tan \\theta -i}*\\frac{tan \\theta +i}{tan \\theta +i}\\\\\nSimplifying \\\\\nz=- cos 2\\theta + sin2 \\theta i\\\\\nHence\\\\\ne^{i \\theta}= cos \\theta + isin \\theta\\\\\ne^{-i \\theta}= cos \\theta - isin \\theta\\\\\n\\implies e^{i2\\theta}= cos 2\\theta + isin 2\\theta\\\\\n\\space \\space \\space \\space \\space \\space \\space \\space \\space \\space e^{-i \\theta}= cos 2\\theta -isin2 \\theta\\\\\nAdding \\space them\\\\\ncos 2 \\theta = \\frac{e^{i2 \\theta }-e^{-i2 \\theta }}{2}\\\\\nAlso, sin 2 \\theta = \\frac{e^{i2 \\theta }-e^{-i2 \\theta }}{2i}\\\\\nz= \\frac{e^{i2 \\theta }-e^{-i2 \\theta }}{2}+ \\frac{e^{i2 \\theta }-e^{-i2 \\theta }}{2i}\\\\\nz= -e^{i2 \\theta }\\\\\n\\therefore z^n= (-e^{i2 \\theta })^n = (-)^ne^{i2n \\theta }"
2b
"z = cos \u03b8 - i(1 + sin \u03b8)\\\\\n|\\frac{\\bar{2z+i}}{-1-iz}|=|\\frac{\\bar{2(cos \u03b8 - i(1 + sin \u03b8))+i}}{-1-i(cos \u03b8 - i(1 + sin \u03b8))}|\\\\\n=\\frac{\\bar{2cos \u03b8 - i(1 + 2sin \u03b8)}}{(-2- sin \u03b8)-icos \\theta}*\\frac{-2-sin \\theta+icos \\theta}{(-2- sin \u03b8)-icos \\theta}\\\\\n= \\frac{-3 cos \\theta + i (5 sin \\theta +3)}{4 sin \\theta +5}\\\\\nConjugate \\\\\n\\frac{-3 cos \\theta + i (5 sin \\theta +3)}{4 sin \\theta +5}\\\\\n|\\frac{\\bar{2z+i}}{-1-iz}|= \\sqrt{(\\frac{-3 cos \\theta }{4 sin \\theta +5})^2+(\\frac{5 sin \\theta +3 }{4 sin \\theta +5})^2}\\\\\n= \\frac{ \\sqrt{16 sin^2+30sin \\theta +18}}{4 sin \\theta +5}"
Comments
Leave a comment