Solution.
1a
Derive the 4th roots of W=-8i
Write the complex number in polar form
If W=a+bi=rcosθ +irsinθ
r=a2+b2=0+(−8)2=8
θ=tan−1(0−8)=−2π=−90°
W=8cos(-90°)+i8sin(-90°)
By De Moivres theorem,
W1/n=r1/n[cosn(2πk+θ)+isinn(2πk+θ)]
Where k=0,1,2...,n-1
1st root ,take k=0
841[cos(−22.5°)+isin(−22.5°)]=1.554−0.6436i
2nd root ,take k=1
841 [Cos(-22.5°+90°)+iSin(-22.5°+90°)]=0.6436+1.554i
3rd root ,take k=2
841[Cos(-22.5+180°)+iSin (-22.5°+180°)]=-1.554+0.6436i
4th root,take k=3
841 [Cos(-22.5+270°)+iSin (-22.5°+270°)=-0.6436-1.554i
1b
De Moivres theorem;
Cosnθ+iSinnθ=(cosθ+isinθ)n
Cos 4θ=Re(cosθ+iSinθ)4)
Cos4θ=Re(Cos4θ+4Cos3θ(isinθ)+6cos2θ(isinθ)2+4cosθ(isinθ)3+(isinθ)4)
Cos4θ=cos4θ−6cos2θsin2θ+sin4θ
sin5θ
By De Moivre's Theorem;
Cos5θ+isin5θ=(cosθ+isinθ)5
Cos5θ +isin5θ can now be expressed as;
Cos5θ+isin5θ=cos5θ+5cos4θisinθ+10cos3θi2sin2θ+10cos2θi3sin3θ+5cosθi4sin4θ+i5sin5θ
Group real parts and imaginary parts together;
Cos5θ+isin5θ=(cos5θ−10cos3θsin2θ+5cosθsin4θ)+i(5cos4θsinθ−10cos2θsin3θ+sin5θ)
Equate the imaginary parts of both sides together;
isin5θ=i(5cos4θsinθ−10cos2θsin3θ+sin5θ)
Divide out i
Sin5θ=5cos4θsinθ−10cos2θsin3θ+sin5θ)
1c
By De Moivre's Theorem;
zn+z-n=2cosnθ
Take n=1
2cosθ =z1+z-1
(2cosθ )6=(z1+z-1)6
(2cosθ)6 =z6+6z4+15z2+20+15z-2+6z-4+z-6
64cos6θ =(z6+z-6)+6(z4+z-4)+15(z2+z-2)+20
64cos6θ=2cos6θ+12cos4θ+30cos2θ+20
Divide by 64;
Cos6θ=322cos6θ+163cos4θ+3215cos2θ+165
1d
Find Cos3θ
(2cosθ)3=(z1+z-1)3=z3+3z1+3z-1+z-3
8cos3θ =(z3+z-3)+3(z1+z-1)
=2cos3θ+6cosθ
cos3θ=41cos3θ+43cosθ
Find sin4θ
(2isinθ )4=(z-z-1)4=z4-4z2+6-4z-2+z-4
16sin4θ =2cos4θ−6cos2θ+6
Sin4θ=81cos4θ−21cos2θ+83
Therefore;
cos3θsin4θ=(41cos3θ+83cosθ)(81cos4θ−21cos2θ+83)
Using the identity ;
CosAcosB=21 [Cos(A+B)+Cos(A-B)
Simplify.
641(cos7θ−cos5θ−3cos3θ+3cosθ)
2a
z=z2z1z1=tanθ+iz2=z1ˉ=(tanθ+i)ˉ=tanθ−iz=z2z1=tanθ−itanθ+iz=tanθ−itanθ+i∗tanθ+itanθ+iSimplifyingz=−cos2θ+sin2θiHenceeiθ=cosθ+isinθe−iθ=cosθ−isinθ⟹ei2θ=cos2θ+isin2θ e−iθ=cos2θ−isin2θAdding themcos2θ=2ei2θ−e−i2θAlso,sin2θ=2iei2θ−e−i2θz=2ei2θ−e−i2θ+2iei2θ−e−i2θz=−ei2θ∴zn=(−ei2θ)n=(−)nei2nθ
2b
z=cosθ−i(1+sinθ)∣−1−iz2z+iˉ∣=∣−1−i(cosθ−i(1+sinθ))2(cosθ−i(1+sinθ))+iˉ∣=(−2−sinθ)−icosθ2cosθ−i(1+2sinθ)ˉ∗(−2−sinθ)−icosθ−2−sinθ+icosθ=4sinθ+5−3cosθ+i(5sinθ+3)Conjugate4sinθ+5−3cosθ+i(5sinθ+3)∣−1−iz2z+iˉ∣=(4sinθ+5−3cosθ)2+(4sinθ+55sinθ+3)2=4sinθ+516sin2+30sinθ+18
Comments