Question #217998

In R^4, let U=span((1,1,0,0),(1,1,1,2)). Find u\inU such that ||u-(1,2,3,4)|| is as small as possible.


1
Expert's answer
2021-07-20T18:00:17-0400

We will use the normal equations for the formula of an orthogonal projection. LetA=(11110102)andb=(1234)Then u is the orthogonal projection of b onto the subspace spanned by the column of A and it is given by the formula:u=A(ATA)1ATbWe get that ATb=(11001112)(1234)=(314)ATA=(11001112)(11110102)=(2227)(ATA)1=110(7222)(ATA)1ATb=110(7222)(314)=110(722)u=A(ATA)1ATb=110(11110102)(722)=110(15152244)The answer is u=110(15152244)\text{We will use the normal equations for the formula of an orthogonal projection. Let}\\A=\begin{pmatrix} 1 & 1 \\1&1\\0&1\\0&2 \end{pmatrix} and b = \begin{pmatrix} 1 \\2\\3\\4 \end{pmatrix} \\\text{Then u is the orthogonal projection of b onto the subspace spanned by the column }\\\text{of A and it is given by the formula:}\\u= A(A^TA)^{-1}A^Tb\\\text{We get that }\\A^Tb =\begin{pmatrix} 1 & 1&0&0 \\1&1&1&2 \end{pmatrix}\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}=\begin{pmatrix} 3\\14 \end{pmatrix}\\ A^TA=\begin{pmatrix} 1 & 1&0&0 \\1&1&1&2 \end{pmatrix}\begin{pmatrix} 1 & 1 \\1&1\\0&1\\0&2 \end{pmatrix}=\begin{pmatrix} 2&2\\2&7 \end{pmatrix} \\(A^TA)^{-1}=\frac{1}{10} \begin{pmatrix} 7 & -2 \\ -2 & 2 \end{pmatrix}\\(A^TA)^{-1}A^Tb=\frac{1}{10} \begin{pmatrix} 7 & -2 \\ -2 & 2 \end{pmatrix}\begin{pmatrix}3\\14\end{pmatrix}=\frac{1}{10} \begin{pmatrix} -7 \\ 22 \end{pmatrix} \\u=A(A^TA)^{-1}A^Tb=\frac{1}{10} \begin{pmatrix} 1&1 \\ 1&1\\0&1\\0&2 \end{pmatrix}\begin{pmatrix}-7\\22\end{pmatrix}=\frac{1}{10} \begin{pmatrix} 15 \\ 15\\22\\44 \end{pmatrix} \\\text{The answer is u=} \frac{1}{10}\begin{pmatrix}15\\15\\22\\44\end{pmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS