e1=∥(1,2,3,−4)∥(1,2,3,−4)e1=(301,152,103,−2152)e2=∥(−5,4,3,2)−<(−5,4,3,2),e1>e1∥(−5,4,3,2)−<(−5,4,3,2),e1>e1e2=(−1203077,2860152,1340103,1960152)e3=∥(1,0,0,0)−<(1,0,0,0),e1>e1−<(1,0,0,0),e2>e2∥(1,0,0,0)−<(1,0,0,0),e1>e1−<(1,0,0,0),e2>e2e3=(401190,76190117,6761910,76190151)e4=∥(0,1,0,0)−<(0,1,0,0),e1>e1−<(0,1,0,0),e2>e2−<(0,1,0,0),e3>e3∥(0,1,0,0)−<(0,1,0,0),e1>e1−<(0,1,0,0),e2>e2−<(0,1,0,0),e3>e3e4=(0,1909,−1910,−1903) Orthogonal basis of u is
(301,152,103,−2152) and (−1203077,2860152,1340103,1960152) while the orthogonal basis of u⊥(401190,76190117,6761910,76190151)
Comments