Question #217997

suppose u is a subspace of r^4 defined by u=span((1,2,3,-4),(-5,4,3,2)). find an orthonormal basis of u and an orthonormal basis of u^⊥


1
Expert's answer
2021-07-19T14:18:17-0400

Notice that (1,2,3-4) and (-5,4,3,2) are linearly independent since neither vetor is a scalar multiple of the other. Thus the basis is

(1,2,3,-4),(-5,4,3,2),(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)

So basis of R4\R^4 is

(1,2,3,-4),(-5,4,3,2),(1,0,0,0),(0,1,0,0)

e1=(1,2,3,4)(1,2,3,4)e1=(130,215,310,2215)e2=(5,4,3,2)<(5,4,3,2),e1>e1(5,4,3,2)<(5,4,3,2),e1>e1e2=(7712030,2826015,1334010,1926015)e3=(1,0,0,0)<(1,0,0,0),e1>e1<(1,0,0,0),e2>e2(1,0,0,0)<(1,0,0,0),e1>e1<(1,0,0,0),e2>e2e3=(190401,11776190,6107619,15176190)e4=(0,1,0,0)<(0,1,0,0),e1>e1<(0,1,0,0),e2>e2<(0,1,0,0),e3>e3(0,1,0,0)<(0,1,0,0),e1>e1<(0,1,0,0),e2>e2<(0,1,0,0),e3>e3e4=(0,9190,1019,3190)e_1=\frac{(1,2,3,-4)}{\|(1,2,3,-4)\|}\\ e_1=(\frac{1}{\sqrt{30}},\sqrt{\frac{2}{15}},\sqrt{\frac{3}{10}},-2\sqrt{\frac{2}{15}})\\ e_2=\frac{(-5,4,3,2)-<(-5,4,3,2),e_1>e_1}{\|(-5,4,3,2)-<(-5,4,3,2),e_1>e_1\|}\\ e_2=(-\frac{77}{\sqrt{12030}},28\sqrt{\frac{2}{6015}},13\sqrt{\frac{3}{4010}},19\sqrt{\frac{2}{6015}})\\ e_3=\frac{(1,0,0,0)-<(1,0,0,0),e_1>e_1- <(1,0,0,0),e_2>e_2}{\|(1,0,0,0)-<(1,0,0,0),e_1>e_1- <(1,0,0,0),e_2>e_2\|}\\ e_3=(\sqrt{\frac{190}{401}},\frac{117}{\sqrt{76190}},6\sqrt{\frac{10}{7619}},\frac{151}{\sqrt{76190}})\\ e_4=\frac{(0,1,0,0)-<(0,1,0,0),e_1>e_1- <(0,1,0,0),e_2>e_2-<(0,1,0,0),e_3>e_3}{\|(0,1,0,0)-<(0,1,0,0),e_1>e_1- <(0,1,0,0),e_2>e_2-<(0,1,0,0),e_3>e_3\|}\\ e_4=(0,\frac{9}{\sqrt{190}},-\sqrt{\frac{10}{19}},-\frac{3}{\sqrt{190}}) Orthogonal basis of u is

(130,215,310,2215)(\frac{1}{\sqrt{30}},\sqrt{\frac{2}{15}},\sqrt{\frac{3}{10}},-2\sqrt{\frac{2}{15}}) and (7712030,2826015,1334010,1926015)(-\frac{77}{\sqrt{12030}},28\sqrt{\frac{2}{6015}},13\sqrt{\frac{3}{4010}},19\sqrt{\frac{2}{6015}}) while the orthogonal basis of uu^\bot (190401,11776190,6107619,15176190)(\sqrt{\frac{190}{401}},\frac{117}{\sqrt{76190}},6\sqrt{\frac{10}{7619}},\frac{151}{\sqrt{76190}})

and (0,9190,1019,3190)(0,\frac{9}{\sqrt{190}},-\sqrt{\frac{10}{19}},-\frac{3}{\sqrt{190}})



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS