Let v 1 = ( 1 , 2 , 3 , − 4 ) v_1=(1,2,3,-4) v 1 = ( 1 , 2 , 3 , − 4 ) , v 2 = ( − 5 , 4 , 3 , 2 ) v_2=(-5,4,3,2) v 2 = ( − 5 , 4 , 3 , 2 ) , v 3 = ( 0 , 0 , 1 , 0 ) v_3=(0,0,1,0) v 3 = ( 0 , 0 , 1 , 0 ) , v 4 = ( 0 , 0 , 0 , 1 ) v_4=(0,0,0,1) v 4 = ( 0 , 0 , 0 , 1 ) . This is a basis of the vector space R 4 {\mathbb R}^4 R 4 , v 1 v_1 v 1 and v 2 v_2 v 2 form a basis of U U U . Let's apply the Gram-Schmidt's method of orthogonalization to this vector system.
Let w 1 = v 1 = ( 1 , 2 , 3 , − 4 ) w_1=v_1=(1,2,3,-4) w 1 = v 1 = ( 1 , 2 , 3 , − 4 ) , then:
⟨ w 1 , w 1 ⟩ = 1 2 + 2 2 + 3 2 + ( − 4 ) 2 = 30 \langle{w_1,w_1}\rangle=1^2+2^2+3^2+(-4)^2=30 ⟨ w 1 , w 1 ⟩ = 1 2 + 2 2 + 3 2 + ( − 4 ) 2 = 30 .
⟨ v 2 , w 1 ⟩ = − 5 ⋅ 1 + 4 ⋅ 2 + 3 ⋅ 3 + 2 ⋅ ( − 4 ) = 4 \langle{v_2,w_1}\rangle=-5\cdot 1+4\cdot 2+3\cdot 3+2\cdot(-4)=4 ⟨ v 2 , w 1 ⟩ = − 5 ⋅ 1 + 4 ⋅ 2 + 3 ⋅ 3 + 2 ⋅ ( − 4 ) = 4 .
⟨ v 3 , w 1 ⟩ = 3 \langle{v_3,w_1}\rangle=3 ⟨ v 3 , w 1 ⟩ = 3 .
⟨ v 4 , w 1 ⟩ = − 4 \langle{v_4,w_1}\rangle=-4 ⟨ v 4 , w 1 ⟩ = − 4 .
Calculate v 2 − ⟨ v 2 , w 1 ⟩ ⟨ w 1 , w 1 ⟩ w 1 = v 2 − 4 30 w 1 = v_2-\frac{\langle{v_2,w_1}\rangle}{\langle{w_1,w_1}\rangle} w_1=v_2-\frac{4}{30}w_1= v 2 − ⟨ w 1 , w 1 ⟩ ⟨ v 2 , w 1 ⟩ w 1 = v 2 − 30 4 w 1 =
= ( − 5 , 4 , 3 , 2 ) − 2 15 ( 1 , 2 , 3 , − 4 ) = 1 15 ( − 77 , 56 , 39 , 38 ) =(-5,4,3,2)-\frac{2}{15}(1,2,3,-4)=\frac{1}{15}(-77,56,39,38) = ( − 5 , 4 , 3 , 2 ) − 15 2 ( 1 , 2 , 3 , − 4 ) = 15 1 ( − 77 , 56 , 39 , 38 ) .
Let w 2 = ( − 77 , 56 , 39 , 38 ) w_2=(-77,56,39,38) w 2 = ( − 77 , 56 , 39 , 38 ) , then:
⟨ w 1 , w 2 ⟩ = 0 \langle{w_1,w_2}\rangle=0 ⟨ w 1 , w 2 ⟩ = 0 .
⟨ w 2 , w 2 ⟩ = ( − 77 ) 2 + 5 6 2 + 3 9 2 + 3 8 2 = 12030 \langle{w_2,w_2}\rangle=(-77)^2+56^2+39^2+38^2=12030 ⟨ w 2 , w 2 ⟩ = ( − 77 ) 2 + 5 6 2 + 3 9 2 + 3 8 2 = 12030
⟨ v 3 , w 2 ⟩ = 39 \langle{v_3,w_2}\rangle=39 ⟨ v 3 , w 2 ⟩ = 39 .
⟨ v 4 , w 2 ⟩ = 38 \langle{v_4,w_2}\rangle=38 ⟨ v 4 , w 2 ⟩ = 38 .
Calculate v 3 − ⟨ v 3 , w 1 ⟩ ⟨ w 1 , w 1 ⟩ w 1 − ⟨ v 3 , w 2 ⟩ ⟨ w 2 , w 2 ⟩ w 2 = v 3 − 3 30 w 1 − 39 12030 w 2 v_3-\frac{\langle{v_3,w_1}\rangle}{\langle{w_1,w_1}\rangle} w_1-\frac{\langle{v_3,w_2}\rangle}{\langle{w_2,w_2}\rangle} w_2=v_3-\frac{3}{30}w_1-\frac{39}{12030}w_2 v 3 − ⟨ w 1 , w 1 ⟩ ⟨ v 3 , w 1 ⟩ w 1 − ⟨ w 2 , w 2 ⟩ ⟨ v 3 , w 2 ⟩ w 2 = v 3 − 30 3 w 1 − 12030 39 w 2
= 1 4010 ( 4010 v 3 − 401 w 1 − 13 w 2 ) = 1 4010 ( 600 , − 1530 , 2300 , 1110 ) =\frac{1}{4010}(4010v_3-401w_1-13w_2)=\frac{1}{4010}(600,-1530,2300,1110) = 4010 1 ( 4010 v 3 − 401 w 1 − 13 w 2 ) = 4010 1 ( 600 , − 1530 , 2300 , 1110 )
= 1 401 ( 60 , − 153 , 230 , 111 ) =\frac{1}{401}(60,-153,230,111) = 401 1 ( 60 , − 153 , 230 , 111 ) .
Let w 3 = ( 60 , − 153 , 230 , 111 ) w_3=(60,-153,230,111) w 3 = ( 60 , − 153 , 230 , 111 ) . Then
⟨ w 1 , w 3 ⟩ = 0 \langle{w_1,w_3}\rangle=0 ⟨ w 1 , w 3 ⟩ = 0
⟨ w 2 , w 3 ⟩ = 0 \langle{w_2,w_3}\rangle=0 ⟨ w 2 , w 3 ⟩ = 0
⟨ w 3 , w 3 ⟩ = 6 0 2 + ( − 153 ) 2 + 23 0 2 + 11 1 2 = 92230 \langle{w_3,w_3}\rangle=60^2+(-153)^2+230^2+111^2=92230 ⟨ w 3 , w 3 ⟩ = 6 0 2 + ( − 153 ) 2 + 23 0 2 + 11 1 2 = 92230
⟨ v 4 , w 3 ⟩ = 111 \langle{v_4,w_3}\rangle=111 ⟨ v 4 , w 3 ⟩ = 111 .
Calculate v 4 − ⟨ v 4 , w 1 ⟩ ⟨ w 1 , w 1 ⟩ w 1 − ⟨ v 4 , w 2 ⟩ ⟨ w 2 , w 2 ⟩ w 2 − ⟨ v 4 , w 3 ⟩ ⟨ w 3 , w 3 ⟩ w 3 v_4-\frac{\langle{v_4,w_1}\rangle}{\langle{w_1,w_1}\rangle} w_1-\frac{\langle{v_4,w_2}\rangle}{\langle{w_2,w_2}\rangle} w_2-\frac{\langle{v_4,w_3}\rangle}{\langle{w_3,w_3}\rangle} w_3 v 4 − ⟨ w 1 , w 1 ⟩ ⟨ v 4 , w 1 ⟩ w 1 − ⟨ w 2 , w 2 ⟩ ⟨ v 4 , w 2 ⟩ w 2 − ⟨ w 3 , w 3 ⟩ ⟨ v 4 , w 3 ⟩ w 3
= v 4 + 4 30 w 1 − 38 12030 w 2 − 111 92230 w 3 =v_4+\frac{4}{30}w_1-\frac{38}{12030}w_2-\frac{111}{92230}w_3 = v 4 + 30 4 w 1 − 12030 38 w 2 − 92230 111 w 3
= 1 276690 ( 276690 v 4 + 27669 w 1 − 874 w 2 − 333 w 3 ) =\frac{1}{276690}(276690v_4+27669w_1-874w_2-333w_3) = 276690 1 ( 276690 v 4 + 27669 w 1 − 874 w 2 − 333 w 3 )
= 1 276690 ( 74987 , 57343 , − 27669 , 95839 ) =\frac{1}{276690}(74987,57343,-27669,95839
) = 276690 1 ( 74987 , 57343 , − 27669 , 95839 ) .
Let w 4 = ( 74987 , 57343 , − 27669 , 95839 ) w_4=(74987,57343,-27669,95839) w 4 = ( 74987 , 57343 , − 27669 , 95839 ) . Then
⟨ w 1 , w 4 ⟩ = 0 \langle{w_1,w_4}\rangle=0 ⟨ w 1 , w 4 ⟩ = 0
⟨ w 2 , w 4 ⟩ = 0 \langle{w_2,w_4}\rangle=0 ⟨ w 2 , w 4 ⟩ = 0
⟨ w 3 , w 4 ⟩ = 0 \langle{w_3,w_4}\rangle=0 ⟨ w 3 , w 4 ⟩ = 0
⟨ w 4 , w 4 ⟩ = 18861957300 \langle{w_4,w_4}\rangle=18861957300 ⟨ w 4 , w 4 ⟩ = 18861957300 .
We have constructed an orthogonal basis w 1 , w 2 , w 3 , w 4 w_1,\,w_2,\,w_3,\,w_4 w 1 , w 2 , w 3 , w 4 of R 4 {\mathbb R}^4 R 4 . The vectors w 1 , w 2 w_1,\,w_2 w 1 , w 2 form a basis of U, because w 1 , w 2 ∈ S p a n { v 1 , v 2 } = U w_1,w_2\in Span\{v_1,v_2\}=U w 1 , w 2 ∈ Sp an { v 1 , v 2 } = U and dim U = 2 \dim U=2 dim U = 2 .
Since the vectors w 3 , w 4 w_3,\,w_4 w 3 , w 4 are orthogonal to w 1 , w 2 w_1,w_2 w 1 , w 2 , they form a basis of U ⊥ U^{\perp} U ⊥ .
To obtain orthonormal bases, one should normalize these vectors and take 1 30 w 1 \frac{1}{\sqrt{30}}w_1 30 1 w 1 , 1 12030 w 2 \frac{1}{\sqrt{12030}}w_2 12030 1 w 2 , 1 92230 w 3 \frac{1}{\sqrt{92230}}w_3 92230 1 w 3 and 1 18861957300 w 4 \frac{1}{\sqrt{18861957300}}w_4 18861957300 1 w 4 instead of them.
Comments