Question #217996

suppose u is a subspace of r^4 defined by u=span((1,2,3,-4),(-5,4,3,2)). find an orthonormal basis of u and an orthonormal basis of u^π


1
Expert's answer
2022-01-31T15:54:03-0500

Let v1=(1,2,3,4)v_1=(1,2,3,-4), v2=(5,4,3,2)v_2=(-5,4,3,2), v3=(0,0,1,0)v_3=(0,0,1,0), v4=(0,0,0,1)v_4=(0,0,0,1). This is a basis of the vector space R4{\mathbb R}^4, v1v_1 and v2v_2 form a basis of UU. Let's apply the Gram-Schmidt's method of orthogonalization to this vector system.


Let w1=v1=(1,2,3,4)w_1=v_1=(1,2,3,-4), then:

w1,w1=12+22+32+(4)2=30\langle{w_1,w_1}\rangle=1^2+2^2+3^2+(-4)^2=30.

v2,w1=51+42+33+2(4)=4\langle{v_2,w_1}\rangle=-5\cdot 1+4\cdot 2+3\cdot 3+2\cdot(-4)=4.

v3,w1=3\langle{v_3,w_1}\rangle=3.

v4,w1=4\langle{v_4,w_1}\rangle=-4.


Calculate v2v2,w1w1,w1w1=v2430w1=v_2-\frac{\langle{v_2,w_1}\rangle}{\langle{w_1,w_1}\rangle} w_1=v_2-\frac{4}{30}w_1=

=(5,4,3,2)215(1,2,3,4)=115(77,56,39,38)=(-5,4,3,2)-\frac{2}{15}(1,2,3,-4)=\frac{1}{15}(-77,56,39,38).


Let w2=(77,56,39,38)w_2=(-77,56,39,38), then:

w1,w2=0\langle{w_1,w_2}\rangle=0.

w2,w2=(77)2+562+392+382=12030\langle{w_2,w_2}\rangle=(-77)^2+56^2+39^2+38^2=12030

v3,w2=39\langle{v_3,w_2}\rangle=39.

v4,w2=38\langle{v_4,w_2}\rangle=38.


Calculate v3v3,w1w1,w1w1v3,w2w2,w2w2=v3330w13912030w2v_3-\frac{\langle{v_3,w_1}\rangle}{\langle{w_1,w_1}\rangle} w_1-\frac{\langle{v_3,w_2}\rangle}{\langle{w_2,w_2}\rangle} w_2=v_3-\frac{3}{30}w_1-\frac{39}{12030}w_2

=14010(4010v3401w113w2)=14010(600,1530,2300,1110)=\frac{1}{4010}(4010v_3-401w_1-13w_2)=\frac{1}{4010}(600,-1530,2300,1110)

=1401(60,153,230,111)=\frac{1}{401}(60,-153,230,111).


Let w3=(60,153,230,111)w_3=(60,-153,230,111). Then

w1,w3=0\langle{w_1,w_3}\rangle=0

w2,w3=0\langle{w_2,w_3}\rangle=0

w3,w3=602+(153)2+2302+1112=92230\langle{w_3,w_3}\rangle=60^2+(-153)^2+230^2+111^2=92230

v4,w3=111\langle{v_4,w_3}\rangle=111.


Calculate v4v4,w1w1,w1w1v4,w2w2,w2w2v4,w3w3,w3w3v_4-\frac{\langle{v_4,w_1}\rangle}{\langle{w_1,w_1}\rangle} w_1-\frac{\langle{v_4,w_2}\rangle}{\langle{w_2,w_2}\rangle} w_2-\frac{\langle{v_4,w_3}\rangle}{\langle{w_3,w_3}\rangle} w_3

=v4+430w13812030w211192230w3=v_4+\frac{4}{30}w_1-\frac{38}{12030}w_2-\frac{111}{92230}w_3

=1276690(276690v4+27669w1874w2333w3)=\frac{1}{276690}(276690v_4+27669w_1-874w_2-333w_3)

=1276690(74987,57343,27669,95839)=\frac{1}{276690}(74987,57343,-27669,95839 ).


Let w4=(74987,57343,27669,95839)w_4=(74987,57343,-27669,95839). Then

w1,w4=0\langle{w_1,w_4}\rangle=0

w2,w4=0\langle{w_2,w_4}\rangle=0

w3,w4=0\langle{w_3,w_4}\rangle=0

w4,w4=18861957300\langle{w_4,w_4}\rangle=18861957300.


We have constructed an orthogonal basis w1,w2,w3,w4w_1,\,w_2,\,w_3,\,w_4 of R4{\mathbb R}^4. The vectors w1,w2w_1,\,w_2 form a basis of U, because w1,w2Span{v1,v2}=Uw_1,w_2\in Span\{v_1,v_2\}=U and dimU=2\dim U=2.

Since the vectors w3,w4w_3,\,w_4 are orthogonal to w1,w2w_1,w_2, they form a basis of UU^{\perp}.

To obtain orthonormal bases, one should normalize these vectors and take 130w1\frac{1}{\sqrt{30}}w_1, 112030w2\frac{1}{\sqrt{12030}}w_2, 192230w3\frac{1}{\sqrt{92230}}w_3 and 118861957300w4\frac{1}{\sqrt{18861957300}}w_4 instead of them.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS