Question #216935

Find vectors u,v \in R2 such that u is a scalar multiple of (1,3), v is orthogonal to (1,3), and (1,2) = u +v.


1
Expert's answer
2021-07-14T12:49:23-0400

Let u=(u1,u2),v=(v1,v2).u=(u_1, u_2), v=(v_1, v_2).


uu is a scalar multiple of (1,3):(1, 3): u2=3u1.u_2 =3u_1.


vv is orthogonal to (1,3):v1+3v2=0=>v1=3v2(1,3):v_1+3v_2=0=>v_1=-3v_2


u+v=(1,2):u1+v1=1,u2+v2=2u+v=(1,2):u_1+v_1=1, u_2+v_2=2


Hence


u13v2=13u1+v2=2\begin{matrix} u_1-3v_2= 1\\ 3u_1+v_2 =2 \end{matrix}

u1=3v2+19v2+3+v2=2\begin{matrix} u_1=3v_2+ 1\\ 9v_2+3+v_2 =2 \end{matrix}


u1=0.7v2=0.1\begin{matrix} u_1=0.7\\ v_2 =-0.1 \end{matrix}

Then


u=(0.7,2.1),u=(0.7, 2.1),

v=(0.3,0.1).v=(0.3, -0.1).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS