Find vectors u,v ∈\in∈ R2 such that u is a scalar multiple of (1,3), v is orthogonal to (1,3), and (1,2) = u +v.
Let u=(u1,u2),v=(v1,v2).u=(u_1, u_2), v=(v_1, v_2).u=(u1,u2),v=(v1,v2).
uuu is a scalar multiple of (1,3):(1, 3):(1,3): u2=3u1.u_2 =3u_1.u2=3u1.
vvv is orthogonal to (1,3):v1+3v2=0=>v1=−3v2(1,3):v_1+3v_2=0=>v_1=-3v_2(1,3):v1+3v2=0=>v1=−3v2
u+v=(1,2):u1+v1=1,u2+v2=2u+v=(1,2):u_1+v_1=1, u_2+v_2=2u+v=(1,2):u1+v1=1,u2+v2=2
Hence
Then
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments