Suppose V is the finite-dimensional and S; T€ L(V ). Prove that ST and T S have the same eigenvalues.
"\\texttt{Let}\\;\\; \\lambda \\;\\; \\texttt{be the eigen value of } ST.\\\\\n\\texttt{So, } \\exists v(\\neq 0) \\in V \\ni STv=\\lambda v \\;\\;\\;\\;\\;\\;~~~~~~~ -(i)\\\\\n\\texttt{Let } w= Tv\\\\\n\\texttt{From (i), } T(STv)=T(\\lambda v) \\\\\\Rightarrow TS(Tv)=\\lambda \\times (Tv)\\\\\n\\Rightarrow TSw=\\lambda w\\\\"
"\\texttt{Case I :- }(\\lambda\\neq 0)\\\\\n\\texttt{If } \\lambda \\neq 0, \\texttt{then } \\lambda v \\neq 0\\\\ \\Rightarrow T(\\lambda v)\\neq 0 \\Rightarrow \\lambda w \\neq0 \\Rightarrow w\\neq 0\\\\\n\\texttt{So, } \\lambda \\texttt{ is the eigen value of }TS."
"\\texttt{Case II :- }(\\lambda=0)\\\\\n\\lambda =0 \\\\\\Rightarrow ST \\texttt{ is not invertible}\n\\\\\\Rightarrow S \\texttt{ or } T \\texttt{ is not invertibe}\n\\\\\\Rightarrow TS \\texttt{ is not invertible}\n\\\\\\Rightarrow \\lambda =0\\texttt{ is a eigen value of }TS."
"\\texttt{Hense } ST \\texttt{ and }TS \\texttt{ have the same eigen values.(Proved)}"
Comments
Leave a comment