Suppose T€L(R^2) is defined by T(x, y) =(-3y,x).find the eigenvalues of T
Answer:-
Let λ\lambdaλ be an eigenvalues of T such that T(x,y)=λ(x,y)T(x,y)=λ(x,y)T(x,y)=λ(x,y) .
Then we have T(x,y)=λ(x,y)T(x,y)=λ(x,y)T(x,y)=λ(x,y) so (−3y,x)=(λx,λy)(−3y,x)=(λx,λy)(−3y,x)=(λx,λy) , thus λx=−3yλx=−3yλx=−3y and x=λyx=λyx=λy . So we have λ(λy)=−3yλ(λy)=−3yλ(λy)=−3y
implies we have λ2=−3\lambda^2 = -3λ2=−3 . which has no solution. So there arent any eigenvalues.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments