Question #210530

Suppose T€L(R^2) is defined by T(x, y) =(-3y,x).find the eigenvalues of T


1
Expert's answer
2021-06-28T16:31:21-0400

Answer:-

 Let λ\lambda be an eigenvalues of T such that T(x,y)=λ(x,y)T(x,y)=λ(x,y) .

 Then we have T(x,y)=λ(x,y)T(x,y)=λ(x,y) so (3y,x)=(λx,λy)(−3y,x)=(λx,λy) , thus λx=3yλx=−3y  and x=λyx=λy . So we have λ(λy)=3yλ(λy)=−3y

 implies we have λ2=3\lambda^2 = -3 . which has no solution. So there arent any eigenvalues.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS