let F^mxn be the set of all mxn matrices over the field F. is F^mxn is a vector space?
Let V be the vector space
Let "V={A=(a_{ij})\\in M_{m\\times n}: a_{ij}\\in R}"
Let "X=(x_{ij}),Y=(y_{ij})\\in V" and "\\alpha,\\beta\\in Q"
Now lets us check if vector "\\alpha X+\\beta Y" is an element of V.
"\\alpha X+\\beta Y=\\alpha(x_{ij})+\\beta (y_{ij})"
"=(\\alpha x_{ij})+(\\beta y_{ij})\\\\[9pt]\n\n =(\\alpha x_{ij}+\\beta y_{ij})"
Since "(\\alpha x_{ij})+(\\beta y_{ij})\\in R \\forall i" , Vector "\\alpha X+\\beta Y" is an element of V.
So V is the vector space over the field F. Which contains all the "m\\times n" matrices.
Comments
Leave a comment