Let V be the vector space
Let V=A=(aij)∈Mm×n:aij∈R
Let X=(xij),Y=(yij)∈V and α,β∈Q
Now lets us check if vector αX+βY is an element of V.
αX+βY=α(xij)+β(yij)
=(αxij)+(βyij)=(αxij+βyij)
Since (αxij)+(βyij)∈R∀i , Vector αX+βY is an element of V.
So V is the vector space over the field F. Which contains all the m×n matrices.
Comments