Question #210724

let F^mxn be the set of all mxn matrices over the field F. is F^mxn is a vector space?


1
Expert's answer
2021-06-29T03:41:52-0400

Let V be the vector space 


Let V=A=(aij)Mm×n:aijRV={A=(a_{ij})\in M_{m\times n}: a_{ij}\in R}


Let X=(xij),Y=(yij)VX=(x_{ij}),Y=(y_{ij})\in V and α,βQ\alpha,\beta\in Q


Now lets us check if vector αX+βY\alpha X+\beta Y is an element of V.


αX+βY=α(xij)+β(yij)\alpha X+\beta Y=\alpha(x_{ij})+\beta (y_{ij})


        =(αxij)+(βyij)=(αxij+βyij)=(\alpha x_{ij})+(\beta y_{ij})\\[9pt] =(\alpha x_{ij}+\beta y_{ij})


Since (αxij)+(βyij)Ri(\alpha x_{ij})+(\beta y_{ij})\in R \forall i , Vector αX+βY\alpha X+\beta Y is an element of V.


So V is the vector space over the field F. Which contains all the m×nm\times n matrices.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS