Answer to Question #208118 in Linear Algebra for Faith

Question #208118

1.find an expression for 1/2||u+v||²+1/2||u-v||² in terms of ||u||²+||v||².

2.find an expression for ||u+v||²-||u-v||² in terms of u×v.

3.use the result of 2 to deduce an expression for ||u+v||² whenever u and v are orthogonal to each other.


1
Expert's answer
2021-06-18T10:53:57-0400

1. Given arbitrary vectors uu and v.v. We get


u+v2=(u+v)(u+v)||u+v||^2=(u+v)(u+v)

=(u,u)+(u,v)+(v,u)+(v,v)=(u,u)+(u,v)+(v,u)+(v,v)

=u2+2(u,v)+v2=||u||^2+2(u,v)+||v||^2



uv2=(uv)(uv)||u-v||^2=(u-v)(u-v)

=(u,u)(u,v)(v,u)+(v,v)=(u,u)-(u,v)-(v,u)+(v,v)

=u2+2(u,v)+v2=||u||^2+2(u,v)+||v||^2

Then


u+v2+uv2||u+v||^2+||u-v||^2

=u2+2(u,v)+v2+u22(u,v)+v2=||u||^2+2(u,v)+||v||^2+||u||^2-2(u,v)+||v||^2

=2u2+2v2=2||u||^2+2||v||^2

Therefore


12u+v2+12uv2=u2+v2\dfrac{1}{2}||u+v||^2+\dfrac{1}{2}||u-v||^2=||u||^2+||v||^2

2.



u+v2uv2||u+v||^2-||u-v||^2

=u2+2(u,v)+v2u2+2(u,v)v2=||u||^2+2(u,v)+||v||^2-||u||^2+2(u,v)-||v||^2

=4(u,v)=4(u,v)

Therefore


u+v2uv2=4uv||u+v||^2-||u-v||^2=4u\cdot v

3. If  u and v are orthogonal to each other, then uv=0.u\cdot v=0.

Hence


u+v2uv2=0||u+v||^2-||u-v||^2=0

=>u+v2=uv2=>||u+v||^2=|u-v||^2




12u+v2+12uv2\dfrac{1}{2}||u+v||^2+\dfrac{1}{2}||u-v||^2

=12u+v2+12u+v2=\dfrac{1}{2}||u+v||^2+\dfrac{1}{2}||u+v||^2

=u+v2=||u+v||^2

=12uv2+12uv2=\dfrac{1}{2}||u-v||^2+\dfrac{1}{2}||u-v||^2

=uv2=||u-v||^2


=u2+v2=||u||^2+||v||^2

uv2=u+v2=u2+v2||u-v||^2=||u+v||^2=||u||^2+||v||^2




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment