1.find an expression for 1/2||u+v||²+1/2||u-v||² in terms of ||u||²+||v||².
2.find an expression for ||u+v||²-||u-v||² in terms of u×v.
3.use the result of 2 to deduce an expression for ||u+v||² whenever u and v are orthogonal to each other.
1. Given arbitrary vectors "u" and "v." We get
"=(u,u)+(u,v)+(v,u)+(v,v)"
"=||u||^2+2(u,v)+||v||^2"
"=(u,u)-(u,v)-(v,u)+(v,v)"
"=||u||^2+2(u,v)+||v||^2"
Then
"=||u||^2+2(u,v)+||v||^2+||u||^2-2(u,v)+||v||^2"
"=2||u||^2+2||v||^2"
Therefore
2.
"=||u||^2+2(u,v)+||v||^2-||u||^2+2(u,v)-||v||^2"
"=4(u,v)"
Therefore
3. If u and v are orthogonal to each other, then "u\\cdot v=0."
Hence
"=>||u+v||^2=|u-v||^2"
"=\\dfrac{1}{2}||u+v||^2+\\dfrac{1}{2}||u+v||^2"
"=||u+v||^2"
"=\\dfrac{1}{2}||u-v||^2+\\dfrac{1}{2}||u-v||^2"
"=||u-v||^2"
"||u-v||^2=||u+v||^2=||u||^2+||v||^2"
Comments
Leave a comment