T(x;y;z)=(2x−4y+3z+b,6x+cxy) Let us consider T(x1+x2,y1+y2,z1+z2). It should be equal to
T(x1,y1,z1)+T(x2,y2,z2) .
T(x1+x2,y1+y2,z1+z2)
=(2(x1+x2)−4(y1+y2)+3(z1+z2)+b,
6(x1+x2)+c(x1+x2)(y1+y2)).
T(x1,y1,z1)+T(x2,y2,z2)
=(2x1−4y1+3z1+b,6x1+cx1y1)
+(2x2−4y2+3z2+b,6x2+cx2y2)
=(2(x1+x2)−4(y1+y2)+3(z1+z2)+2b,
6(x1+x2)+c(x1y1+x2y2)).
Therefore,
2(x1+x2)−4(y1+y2)+3(z1+z2)+b
=2(x1+x2)−4(y1+y2)+3(z1+z2)+2b for every x1,x2,y1,y2,z1,z2∈R. It is true if and only if
2b=b⇒b=0.
Also it should be true that
6(x1+x2)+c(x1+x2)(y1+y2)
=6(x1+x2)+c(x1y1+x2y2)
c(x1+x2)(y1+y2)=c(x1y1+x2y2)
c(x1y2+x2y1)=c for every x1,x2,y1,y2,z1,z2∈R.
Let, for example, x1=y1=x2=y2=1, then
2c=c=>c=0. So c can be only equal to 0.
So we conclude that if T is linear, b=0 and c=0.
Now we should prove that for b=c=0 T is linear.
T(x,y,z)=(2x−4y+3z,6x)
For every x1,x2,y1,y2,z1,z2∈R
T(x1+x2,y1+y2,z1+z2)
=(2(x1+x2)−4(y1+y2)+3(z1+z2),6(x1+x2))
=(2x1−4y1+3z1,6x1)+(2x2−4y2+3z2,6x2)
=T(x1,y1,z1)+T(x2,y2,z2), so T is linear.
Comments