Question #207694

Suppose b,c element of R, and T: R3 - R2 dened as T (x;y;z) = (2x4y+3z+b,6x+cxy): Show that T is linear if and only if b = c = 0.


1
Expert's answer
2021-06-17T09:50:31-0400
T(x;y;z)=(2x4y+3z+b,6x+cxy)T (x;y;z) = (2x-4y+3z+b,6x+cxy)

Let us consider T(x1+x2,y1+y2,z1+z2).T(x_1+x_2,y_1+y_2,z_1+z_2). It should be equal to 

T(x1,y1,z1)+T(x2,y2,z2)T(x_1,y_1,z_1) + T(x_2,y_2,z_2)

 .


T(x1+x2,y1+y2,z1+z2)T(x_1+x_2,y_1+y_2,z_1+z_2)




=(2(x1+x2)4(y1+y2)+3(z1+z2)+b,= \big(2(x_1+x_2)-4(y_1+y_2) + 3(z_1+z_2)+b,

6(x1+x2)+c(x1+x2)(y1+y2)).6(x_1+x_2)+c(x_1+x_2)(y_1+y_2)\big).



T(x1,y1,z1)+T(x2,y2,z2)T(x_1,y_1,z_1) + T(x_2,y_2,z_2)




=(2x14y1+3z1+b,6x1+cx1y1)= (2x_1-4y_1+3z_1+b,6x_1+cx_1y_1)

+(2x24y2+3z2+b,6x2+cx2y2)+ (2x_2-4y_2+3z_2+b,6x_2+cx_2y_2 )

=(2(x1+x2)4(y1+y2)+3(z1+z2)+2b,= \big(2(x_1+x_2)-4(y_1+y_2) + 3(z_1+z_2)+2b,


6(x1+x2)+c(x1y1+x2y2)).6(x_1+x_2)+c(x_1y_1+x_2y_2)\big).

Therefore, 

2(x1+x2)4(y1+y2)+3(z1+z2)+b2(x_1+x_2)-4(y_1+y_2) + 3(z_1+z_2)+b

 

=2(x1+x2)4(y1+y2)+3(z1+z2)+2b= 2(x_1+x_2)-4(y_1+y_2) + 3(z_1+z_2)+2b

for every x1,x2,y1,y2,z1,z2R.x_1,x_2,y_1,y_2,z_1,z_2\in\R. It is true if and only if

 

2b=b  b=0.2b=b \; \Rightarrow b = 0.


Also it should be true that


6(x1+x2)+c(x1+x2)(y1+y2)6(x_1+x_2)+c(x_1+x_2)(y_1+y_2)

 

=6(x1+x2)+c(x1y1+x2y2)=6(x_1+x_2)+c(x_1y_1+x_2y_2)




c(x1+x2)(y1+y2)=c(x1y1+x2y2)c(x_1+x_2)(y_1+y_2)=c(x_1y_1+x_2y_2)


c(x1y2+x2y1)=cc(x_1y_2+x_2y_1)=c

for every x1,x2,y1,y2,z1,z2R.x_1,x_2,y_1,y_2,z_1,z_2\in\R. 

Let, for example, x1=y1=x2=y2=1,x_1=y_1=x_2=y_2 = 1,  then


2c=c=>c=0.2c=c=>c = 0.

 So cc can be only equal to 0.


So we conclude that if T is linear, b=0b=0 and c=0.c=0.


Now we should prove that for b=c=0b=c=0 TT is linear.



T(x,y,z)=(2x4y+3z,6x)T(x,y,z) = (2x - 4y + 3z, 6x)



For every x1,x2,y1,y2,z1,z2R    x_1,x_2,y_1,y_2,z_1,z_2\in\R \; \; 


T(x1+x2,y1+y2,z1+z2)T(x_1+x_2,y_1+y_2,z_1+z_2)




=(2(x1+x2)4(y1+y2)+3(z1+z2),6(x1+x2))= (2(x_1+x_2)-4(y_1+y_2)+3(z_1+z_2),6(x_1+x_2))

=(2x14y1+3z1,6x1)+(2x24y2+3z2,6x2)= (2x_1-4y_1+3z_1,6x_1) + (2x_2-4y_2+3z_2,6x_2)

=T(x1,y1,z1)+T(x2,y2,z2),= T(x_1,y_1,z_1) + T(x_2,y_2,z_2),

so TT is linear.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS