Answer to Question #197045 in Linear Algebra for Abhishek

Question #197045

Find the eigenvalues and eigenvectors of the matrices

1) [ 9 3 ]

2 9


2) 2 0 1

[ 0 2 0 ]

1 0 2


1
Expert's answer
2021-05-26T17:54:22-0400

(1) [9329]\begin{bmatrix} 9 & 3 \\ 2 & 9 \end{bmatrix}

Start from forming a new matrix by subtracting λ

 from the diagonal entries of the given matrix: 

[9λ329λ]\left[\begin{array}{cc}9 - \lambda & 3\\2 & 9 - \lambda\end{array}\right]

The determinant of the obtained matrix is λ218λ+75\lambda^{2} - 18 \lambda + 75

Solve the equation

The roots are comes to be λ1=96\lambda_{1} = 9 - \sqrt{6} , λ2=6+9\lambda_{2} = \sqrt{6} + 9

These are the eigenvalues.


Next, find the eigenvectors.

a. λ=96\lambda = 9 - \sqrt{6}

[9λ329λ]=[6326]\left[\begin{array}{cc}9 - \lambda & 3\\2 & 9 - \lambda\end{array}\right] = \left[\begin{array}{cc}\sqrt{6} & 3\\2 & \sqrt{6}\end{array}\right]

The null space of this matrix is{[621]}\left\{\left[\begin{array}{c}- \frac{\sqrt{6}}{2}\\1\end{array}\right]\right\}

This is the eigenvector.



b. λ=6+9\lambda = \sqrt{6} + 9

[9λ329λ]=[6326]\left[\begin{array}{cc}9 - \lambda & 3\\2 & 9 - \lambda\end{array}\right] = \left[\begin{array}{cc}- \sqrt{6} & 3\\2 & - \sqrt{6}\end{array}\right]

The null space of this matrix is {[621]}\left\{\left[\begin{array}{c}\frac{\sqrt{6}}{2}\\1\end{array}\right]\right\}

This is the eigenvector.


(2)

[201020102]\begin{bmatrix} 2 & 0 & 1 \\ 0& 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}

as above done we well proceed the same

Start from forming a new matrix by subtracting λ

λ from the diagonal entries of the given matrix: 

[2λ0102λ0102λ].\left[\begin{array}{ccc}2 - \lambda & 0 & 1\\0 & 2 - \lambda & 0\\1 & 0 & 2 - \lambda\end{array}\right].


The determinant of the obtained matrix is 

λ3+6λ211λ+6- \lambda^{3} + 6 \lambda^{2} - 11 \lambda + 6

Solve the equation λ1=3\lambda_{1} = 3 , λ2=2\lambda_{2} = 2 , λ3=1\lambda_{3} = 1

These are the eigenvalues.


Next, find the eigenvectors.

a. λ=3\lambda = 3

[2λ0102λ0102λ]=[101010101]\left[\begin{array}{ccc}2 - \lambda & 0 & 1\\0 & 2 - \lambda & 0\\1 & 0 & 2 - \lambda\end{array}\right] = \left[\begin{array}{ccc}-1 & 0 & 1\\0 & -1 & 0\\1 & 0 & -1\end{array}\right]


The null space of this matrix is {[101]}\left\{\left[\begin{array}{c}1\\0\\1\end{array}\right]\right\}


This is the eigenvector.


b. λ=2\lambda = 2

[2λ0102λ0102λ]=[001000100]\left[\begin{array}{ccc}2 - \lambda & 0 & 1\\0 & 2 - \lambda & 0\\1 & 0 & 2 - \lambda\end{array}\right] = \left[\begin{array}{ccc}0 & 0 & 1\\0 & 0 & 0\\1 & 0 & 0\end{array}\right]

The null space of this matrix is{[010]}\left\{\left[\begin{array}{c}0\\1\\0\end{array}\right]\right\}

This is the eigenvector.


c. λ=1\lambda = 1

[2λ0102λ0102λ]=[101010101]\left[\begin{array}{ccc}2 - \lambda & 0 & 1\\0 & 2 - \lambda & 0\\1 & 0 & 2 - \lambda\end{array}\right] = \left[\begin{array}{ccc}1 & 0 & 1\\0 & 1 & 0\\1 & 0 & 1\end{array}\right]

The null space of this matrix is{[101]}\left\{\left[\begin{array}{c}-1\\0\\1\end{array}\right]\right\}

This is the eigenvector.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment