Answer to Question #197045 in Linear Algebra for Abhishek

Question #197045

Find the eigenvalues and eigenvectors of the matrices

1) [ 9 3 ]

2 9


2) 2 0 1

[ 0 2 0 ]

1 0 2


1
Expert's answer
2021-05-26T17:54:22-0400

(1) "\\begin{bmatrix}\n 9 & 3 \\\\\n 2 & 9\n\\end{bmatrix}"

Start from forming a new matrix by subtracting λ

 from the diagonal entries of the given matrix: 

"\\left[\\begin{array}{cc}9 - \\lambda & 3\\\\2 & 9 - \\lambda\\end{array}\\right]"

The determinant of the obtained matrix is "\\lambda^{2} - 18 \\lambda + 75"

Solve the equation

The roots are comes to be "\\lambda_{1} = 9 - \\sqrt{6}" , "\\lambda_{2} = \\sqrt{6} + 9"

These are the eigenvalues.


Next, find the eigenvectors.

a. "\\lambda = 9 - \\sqrt{6}"

"\\left[\\begin{array}{cc}9 - \\lambda & 3\\\\2 & 9 - \\lambda\\end{array}\\right] = \\left[\\begin{array}{cc}\\sqrt{6} & 3\\\\2 & \\sqrt{6}\\end{array}\\right]"

The null space of this matrix is"\\left\\{\\left[\\begin{array}{c}- \\frac{\\sqrt{6}}{2}\\\\1\\end{array}\\right]\\right\\}"

This is the eigenvector.



b. "\\lambda = \\sqrt{6} + 9"

"\\left[\\begin{array}{cc}9 - \\lambda & 3\\\\2 & 9 - \\lambda\\end{array}\\right] = \\left[\\begin{array}{cc}- \\sqrt{6} & 3\\\\2 & - \\sqrt{6}\\end{array}\\right]"

The null space of this matrix is "\\left\\{\\left[\\begin{array}{c}\\frac{\\sqrt{6}}{2}\\\\1\\end{array}\\right]\\right\\}"

This is the eigenvector.


(2)

"\\begin{bmatrix}\n 2 & 0 & 1 \\\\\n 0& 2 & 0 \\\\\n1 & 0 & 2\n\\end{bmatrix}"

as above done we well proceed the same

Start from forming a new matrix by subtracting λ

λ from the diagonal entries of the given matrix: 

"\\left[\\begin{array}{ccc}2 - \\lambda & 0 & 1\\\\0 & 2 - \\lambda & 0\\\\1 & 0 & 2 - \\lambda\\end{array}\\right]."


The determinant of the obtained matrix is 

"- \\lambda^{3} + 6 \\lambda^{2} - 11 \\lambda + 6"

Solve the equation "\\lambda_{1} = 3" , "\\lambda_{2} = 2" , "\\lambda_{3} = 1"

These are the eigenvalues.


Next, find the eigenvectors.

a. "\\lambda = 3"

"\\left[\\begin{array}{ccc}2 - \\lambda & 0 & 1\\\\0 & 2 - \\lambda & 0\\\\1 & 0 & 2 - \\lambda\\end{array}\\right] = \\left[\\begin{array}{ccc}-1 & 0 & 1\\\\0 & -1 & 0\\\\1 & 0 & -1\\end{array}\\right]"


The null space of this matrix is "\\left\\{\\left[\\begin{array}{c}1\\\\0\\\\1\\end{array}\\right]\\right\\}"


This is the eigenvector.


b. "\\lambda = 2"

"\\left[\\begin{array}{ccc}2 - \\lambda & 0 & 1\\\\0 & 2 - \\lambda & 0\\\\1 & 0 & 2 - \\lambda\\end{array}\\right] = \\left[\\begin{array}{ccc}0 & 0 & 1\\\\0 & 0 & 0\\\\1 & 0 & 0\\end{array}\\right]"

The null space of this matrix is"\\left\\{\\left[\\begin{array}{c}0\\\\1\\\\0\\end{array}\\right]\\right\\}"

This is the eigenvector.


c. "\\lambda = 1"

"\\left[\\begin{array}{ccc}2 - \\lambda & 0 & 1\\\\0 & 2 - \\lambda & 0\\\\1 & 0 & 2 - \\lambda\\end{array}\\right] = \\left[\\begin{array}{ccc}1 & 0 & 1\\\\0 & 1 & 0\\\\1 & 0 & 1\\end{array}\\right]"

The null space of this matrix is"\\left\\{\\left[\\begin{array}{c}-1\\\\0\\\\1\\end{array}\\right]\\right\\}"

This is the eigenvector.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS