Find the eigenvalues and eigenvectors of the matrices
1) [ 9 3 ]
2 9
2) 2 0 1
[ 0 2 0 ]
1 0 2
(1) "\\begin{bmatrix}\n 9 & 3 \\\\\n 2 & 9\n\\end{bmatrix}"
Start from forming a new matrix by subtracting λ
 from the diagonal entries of the given matrix:Â
"\\left[\\begin{array}{cc}9 - \\lambda & 3\\\\2 & 9 - \\lambda\\end{array}\\right]"
The determinant of the obtained matrix is "\\lambda^{2} - 18 \\lambda + 75"
Solve the equation
The roots are comes to be "\\lambda_{1} = 9 - \\sqrt{6}" , "\\lambda_{2} = \\sqrt{6} + 9"
These are the eigenvalues.
Next, find the eigenvectors.
a. "\\lambda = 9 - \\sqrt{6}"
"\\left[\\begin{array}{cc}9 - \\lambda & 3\\\\2 & 9 - \\lambda\\end{array}\\right] = \\left[\\begin{array}{cc}\\sqrt{6} & 3\\\\2 & \\sqrt{6}\\end{array}\\right]"
The null space of this matrix is"\\left\\{\\left[\\begin{array}{c}- \\frac{\\sqrt{6}}{2}\\\\1\\end{array}\\right]\\right\\}"
This is the eigenvector.
b. "\\lambda = \\sqrt{6} + 9"
"\\left[\\begin{array}{cc}9 - \\lambda & 3\\\\2 & 9 - \\lambda\\end{array}\\right] = \\left[\\begin{array}{cc}- \\sqrt{6} & 3\\\\2 & - \\sqrt{6}\\end{array}\\right]"
The null space of this matrix is "\\left\\{\\left[\\begin{array}{c}\\frac{\\sqrt{6}}{2}\\\\1\\end{array}\\right]\\right\\}"
This is the eigenvector.
(2)
"\\begin{bmatrix}\n 2 & 0 & 1 \\\\\n 0& 2 & 0 \\\\\n1 & 0 & 2\n\\end{bmatrix}"
as above done we well proceed the same
Start from forming a new matrix by subtracting λ
λ from the diagonal entries of the given matrix:Â
"\\left[\\begin{array}{ccc}2 - \\lambda & 0 & 1\\\\0 & 2 - \\lambda & 0\\\\1 & 0 & 2 - \\lambda\\end{array}\\right]."
The determinant of the obtained matrix isÂ
"- \\lambda^{3} + 6 \\lambda^{2} - 11 \\lambda + 6"
Solve the equation "\\lambda_{1} = 3" , "\\lambda_{2} = 2" , "\\lambda_{3} = 1"
These are the eigenvalues.
Next, find the eigenvectors.
a. "\\lambda = 3"
"\\left[\\begin{array}{ccc}2 - \\lambda & 0 & 1\\\\0 & 2 - \\lambda & 0\\\\1 & 0 & 2 - \\lambda\\end{array}\\right] = \\left[\\begin{array}{ccc}-1 & 0 & 1\\\\0 & -1 & 0\\\\1 & 0 & -1\\end{array}\\right]"
The null space of this matrix is "\\left\\{\\left[\\begin{array}{c}1\\\\0\\\\1\\end{array}\\right]\\right\\}"
This is the eigenvector.
b. "\\lambda = 2"
"\\left[\\begin{array}{ccc}2 - \\lambda & 0 & 1\\\\0 & 2 - \\lambda & 0\\\\1 & 0 & 2 - \\lambda\\end{array}\\right] = \\left[\\begin{array}{ccc}0 & 0 & 1\\\\0 & 0 & 0\\\\1 & 0 & 0\\end{array}\\right]"
The null space of this matrix is"\\left\\{\\left[\\begin{array}{c}0\\\\1\\\\0\\end{array}\\right]\\right\\}"
This is the eigenvector.
c. "\\lambda = 1"
"\\left[\\begin{array}{ccc}2 - \\lambda & 0 & 1\\\\0 & 2 - \\lambda & 0\\\\1 & 0 & 2 - \\lambda\\end{array}\\right] = \\left[\\begin{array}{ccc}1 & 0 & 1\\\\0 & 1 & 0\\\\1 & 0 & 1\\end{array}\\right]"
The null space of this matrix is"\\left\\{\\left[\\begin{array}{c}-1\\\\0\\\\1\\end{array}\\right]\\right\\}"
This is the eigenvector.
Comments
Leave a comment