Use the CRAMMER'S RULE to solve these systems of linear equations.
5x+6y+7z=40
2x+4y+2z=34
x+3y+5z=30
Given:
"\\left\\{\n\\begin{array}{ c c c }\n5x+6y+7z & = & 40 \\\\ \n2x+4y+2z & = & 34\\\\ \nx+3y+5z & = & 30 \\\\\n\\end{array}\\right."
Solution:
CRAMMER'S RULE
"\\det\\left|\n\\begin{array}{ c c c }\na_{11} & a_{12} & a_{13} \\\\ \na_{21} & a_{22} & a_{23}\\\\ \na_{31} & a_{32} & a_{33} \\\\\n\\end{array}\\right|=a_{11}*a_{22}*a_{33}+a_{12}*a_{23}*a_{31}+a_{13}*a_{21}*a_{32}-\\\\-a_{13}*a_{22}*a_{31}-a_{11}*a_{23}*a_{32}-a_{12}*a_{21}*a_{33}"
"x=\\frac{D_x}{D},y=\\frac{D_y}{D},z=\\frac{D_Z}{D}"
"D=\\det\\left|\n\\begin{array}{ c c c }\n5 & 6 & 7 \\\\ \n2 & 4 & 2\\\\ \n1 & 3 & 5 \\\\\n\\end{array}\\right|=5*4*5+6*2*1+7*2*3-7*4*1-\\\\\n-5*2*3-6*2*5=36"
"D_x=\\det\\left|\n\\begin{array}{ c c c }\n40 & 6 & 7 \\\\ \n34 & 4 & 2\\\\ \n30 & 3 & 5 \\\\\n\\end{array}\\right|=40*4*5+6*2*30+7*34*3-7*4*30-\\\\-40*2*3-6*34*5=-226"
"D_y=\\det\\left|\n\\begin{array}{ c c c }\n5 & 40 & 7 \\\\ \n2 & 34 & 2\\\\ \n1 & 30 & 5 \\\\\n\\end{array}\\right|=5*34*5+40*2*1+7*2*30-7*34*1-\\\\-5*2*30-40*2*5=412"
"D_z=\\det\\left|\n\\begin{array}{ c c c }\n5 & 6 & 40 \\\\ \n2 & 4 & 34\\\\ \n1 & 3 & 30 \\\\\n\\end{array}\\right|=5*4*30+6*34*1+40*2*3-40*4*1-\\\\-5*34*3-6*2*30=14"
"x=\\frac{D_x}{D}=\\frac{-226}{36}=-\\frac{113}{18}=-6\\frac{5}{18};y=\\frac{D_y}{D}=\\frac{412}{36}=\\frac{103}{9}=11\\frac{4}{9};z=\\frac{D_z}{D}=\\frac{14}{36}=\\frac{7}{18}"
Answer :
"x=-6\\frac{5}{18};y=11\\frac{4}{9};z=\\frac{7}{18}"
Comments
Leave a comment