Which of the following matrix (or given expression) results in a non-singular matrix
1) 2 0 0
0 SINà ½SINà
0 -1 -COSà
2) A v B where A = 1 2 -1
3 1 0
-2 -4 2
and B = 1 0 -1
3 1 0
-2 -4 2
3) 2 0 0
3 -4 0
0 -1 0
4) 2 0 0
3 -4 4
0 1 -1
.A square matrix is non singular iff its determinant is non zero.
Consider matrices A and B in 2
det A="\\begin{vmatrix}\n 1 & 2 & -1 \\\\\n 3 & 1 & 0\\\\\n -2 & -4 & 2\n\\end{vmatrix}" = 1·1·2 + 2·0·(-2) + (-1)·3·(-4) - (-1)·1·(-2) - 1·0·(-4) - 2·3·2 = 2 + 0 + 12 - 2 - 0 - 12 = 0
det В = "\\begin{vmatrix}\n 1 & 0 & -1 \\\\\n 3 & 1 & 0\\\\\n -2 & -4 & 2\n\\end{vmatrix}" = ·(-1)·2 + 0·0·(-2) + (-2)·3·(-4) - (-2)·(-1)·(-2) - 1·0·(-4) - 0·3·2 = -2 + 0 + 24 + 4 - 0 - 0 = 26
Since det A=0 and det B=26 then det(A"\\lor" B)=26
so matrix A"\\lor" B is non-singular
Comments
Leave a comment