Use Cramer's rule to find the solution of the following systems of linear equation in terms of the parameter K.
a) 5x - ky = 6. b) 2x - 3y = k
- 2x + 2ky = -3 X + 2y = - 2
a)
"\\begin{cases}\n5x-ky = 6\n\\\\\n-2x+2ky = -3\n\\end{cases}\n\\\\\n\\Delta =\\begin{vmatrix}\n5 & -k \\\\\n-2 & 2k \n\\end{vmatrix}\n=10k -2k = 8k \\\\\n\\Delta_1 = \n\\begin{vmatrix}\n6 &-k\\\\\n3&2\n\\end{vmatrix} = 12k-3k = 9k\\\\\n\\Delta_2 = \n\\begin{vmatrix}\n5&6\\\\\n-2&-3\n\\end{vmatrix} = -15+12 = -3\n\\\\\nx = \\cfrac{\\Delta_1}{\\Delta} = \\cfrac{9k}{8k} = \\cfrac{9}{8}\\\\\ny = \\cfrac{\\Delta_2}{\\Delta} =\\cfrac{-3}{8k}"
b)
"\\begin{cases}\n2x - 3y = k\\\\\nx+2y = -2\n\\end{cases}\\\\\n\\Delta = \n\\begin{vmatrix}\n2 & -3 \\\\ \n1 & 2\n\\end{vmatrix} = 7\\\\\n\\Delta_1 = \n\\begin{vmatrix}\nk&-3\\\\\n-2&2\n\\end{vmatrix} =2k-6\\\\\n\\Delta_2= \n\\begin{vmatrix}\n2&k\\\\\n1&-2\n\\end{vmatrix} = -4-k\\\\\nx = \\cfrac{\\Delta_1}{\\Delta} =\\cfrac{2k-6}{7}\\\\\ny = \\cfrac{\\Delta_2}{\\Delta} = -\\cfrac{4+k}{7}"
Comments
Leave a comment