Consider the system of equations
11 2x1 + x2 + 4x3 =
3x1 + x2 + 5x3 =14
A feasible solution is x1 = ,2 x2 = ,3 x3 = .1 Reduce this feasible solution to a basic
feasible solution.
{2x1+x2=11−4x3,3x1+x2=14−5x3;\begin{cases} 2x_1+x_2=11-4x_3, \\ 3x_1+x_2=14-5x_3; \end{cases}{2x1+x2=11−4x3,3x1+x2=14−5x3;
Δ=∣2131∣=2−3=−1,\Delta=\begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix}=2-3=-1,Δ=∣∣2311∣∣=2−3=−1,
Δ1=∣11−4x3114−5x31∣=11−4x3−14+5x3=x3−3,\Delta_1=\begin{vmatrix} 11-4x_3& 1 \\ 14-5x_3& 1 \end{vmatrix}=11-4x_3-14+5x_3=x_3-3,Δ1=∣∣11−4x314−5x311∣∣=11−4x3−14+5x3=x3−3,
Δ2=∣211−4x3314−5x3∣=28−10x3−33+12x3=2x3−5,\Delta_2=\begin{vmatrix} 2 & 11-4x_3 \\ 3 & 14-5x_3 \end{vmatrix}=28-10x_3-33+12x_3=2x_3-5,Δ2=∣∣2311−4x314−5x3∣∣=28−10x3−33+12x3=2x3−5,
x1=Δ1Δ=3−x3,x_1=\frac{\Delta_1}{\Delta}=3-x_3,x1=ΔΔ1=3−x3,
x2=Δ2Δ=5−2x3.x_2=\frac{\Delta_2}{\Delta}=5-2x_3.x2=ΔΔ2=5−2x3.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments