Question #179236

Consider the system of equations

11 2x1 + x2 + 4x3 =

3x1 + x2 + 5x3 =14

A feasible solution is x1 = ,2 x2 = ,3 x3 = .1 Reduce this feasible solution to a basic

feasible solution.



1
Expert's answer
2021-04-28T04:09:08-0400

{2x1+x2=114x3,3x1+x2=145x3;\begin{cases} 2x_1+x_2=11-4x_3, \\ 3x_1+x_2=14-5x_3; \end{cases}


Δ=2131=23=1,\Delta=\begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix}=2-3=-1,


Δ1=114x31145x31=114x314+5x3=x33,\Delta_1=\begin{vmatrix} 11-4x_3& 1 \\ 14-5x_3& 1 \end{vmatrix}=11-4x_3-14+5x_3=x_3-3,


Δ2=2114x33145x3=2810x333+12x3=2x35,\Delta_2=\begin{vmatrix} 2 & 11-4x_3 \\ 3 & 14-5x_3 \end{vmatrix}=28-10x_3-33+12x_3=2x_3-5,


x1=Δ1Δ=3x3,x_1=\frac{\Delta_1}{\Delta}=3-x_3,

x2=Δ2Δ=52x3.x_2=\frac{\Delta_2}{\Delta}=5-2x_3.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS