Find the inverse of the matrix using echelon reduction method .
x + 3y - z =0
x + y + z = 1
-x + 2y - z = 1
Solution.
"A=\\begin{pmatrix}\n 1 & 3 &-1 \\\\\n1&1&1\\\\\n -1&2&-1\n\\end{pmatrix}""A=\\begin{pmatrix}\n 1 & 3 &-1|1&0&1 \\\\\n1&1 & 1 | 0&1&0\\\\\n -1&2&-1|0&0&1\n\\end{pmatrix}=\n\\begin{pmatrix}\n 1 & 3 &-1|1&0&1 \\\\\n0&-2&2|-1&1&0\\\\\n 0&5&-2|1&0&1\n\\end{pmatrix}=\\newline=\n\\begin{pmatrix}\n 1 & 3 &-1|1&0&1 \\\\\n0&1&-1|\\frac{1}{2}&-\\frac{1}{2}&0\\\\\n 0&0&3| -\\frac{3}{2}&\\frac{5}{2}&1\n\\end{pmatrix}=\n\\begin{pmatrix}\n 1 & 3 &-1|1&0&1 \\\\\n0&1&-1|\\frac{1}{2}&-\\frac{1}{2}&0\\\\\n 0&0&1| -\\frac{1}{2}&\\frac{5}{6}&\\frac{1}{3}\n\\end{pmatrix}=\\newline\n=\\begin{pmatrix}\n 1 & 3 &0|\\frac{1}{2}&\\frac{5}{6}&\\frac{1}{3} \\\\\n0&1&0|0&\\frac{1}{3}&\\frac{1}{3}\\\\\n 0&0&1| -\\frac{1}{2}&\\frac{5}{6}&\\frac{1}{3}\n\\end{pmatrix}=\n=\\begin{pmatrix}\n 1 & 0 &0|\\frac{1}{2}&-\\frac{1}{6}&-\\frac{2}{3} \\\\\n0&1&0|0&\\frac{1}{3}&\\frac{1}{3}\\\\\n 0&0&1| -\\frac{1}{2}&\\frac{5}{6}&\\frac{1}{3}\n\\end{pmatrix}."
So,
"A^{-1}=\\begin{pmatrix}\n \\frac{1}{2}&-\\frac{1}{6}&-\\frac{2}{3} \\\\\n0&\\frac{1}{3}&\\frac{1}{3}\\\\\n -\\frac{1}{2}&\\frac{5}{6}&\\frac{1}{3}\n\\end{pmatrix}."
Comments
Leave a comment