Answer to Question #178101 in Linear Algebra for Ojugbele Daniel

Question #178101

Find the inverse of the matrix using echelon reduction method .


x + 3y - z =0

x + y + z = 1

-x + 2y - z = 1


1
Expert's answer
2021-04-15T07:40:00-0400

Solution.

"A=\\begin{pmatrix}\n 1 & 3 &-1 \\\\\n1&1&1\\\\\n -1&2&-1\n\\end{pmatrix}"

"A=\\begin{pmatrix}\n 1 & 3 &-1|1&0&1 \\\\\n1&1 & 1 | 0&1&0\\\\\n -1&2&-1|0&0&1\n\\end{pmatrix}=\n\\begin{pmatrix}\n 1 & 3 &-1|1&0&1 \\\\\n0&-2&2|-1&1&0\\\\\n 0&5&-2|1&0&1\n\\end{pmatrix}=\\newline=\n\\begin{pmatrix}\n 1 & 3 &-1|1&0&1 \\\\\n0&1&-1|\\frac{1}{2}&-\\frac{1}{2}&0\\\\\n 0&0&3| -\\frac{3}{2}&\\frac{5}{2}&1\n\\end{pmatrix}=\n\\begin{pmatrix}\n 1 & 3 &-1|1&0&1 \\\\\n0&1&-1|\\frac{1}{2}&-\\frac{1}{2}&0\\\\\n 0&0&1| -\\frac{1}{2}&\\frac{5}{6}&\\frac{1}{3}\n\\end{pmatrix}=\\newline\n=\\begin{pmatrix}\n 1 & 3 &0|\\frac{1}{2}&\\frac{5}{6}&\\frac{1}{3} \\\\\n0&1&0|0&\\frac{1}{3}&\\frac{1}{3}\\\\\n 0&0&1| -\\frac{1}{2}&\\frac{5}{6}&\\frac{1}{3}\n\\end{pmatrix}=\n=\\begin{pmatrix}\n 1 & 0 &0|\\frac{1}{2}&-\\frac{1}{6}&-\\frac{2}{3} \\\\\n0&1&0|0&\\frac{1}{3}&\\frac{1}{3}\\\\\n 0&0&1| -\\frac{1}{2}&\\frac{5}{6}&\\frac{1}{3}\n\\end{pmatrix}."

So,

"A^{-1}=\\begin{pmatrix}\n \\frac{1}{2}&-\\frac{1}{6}&-\\frac{2}{3} \\\\\n0&\\frac{1}{3}&\\frac{1}{3}\\\\\n -\\frac{1}{2}&\\frac{5}{6}&\\frac{1}{3}\n\\end{pmatrix}."


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS