use Cramer's Rule to find the solution of the systems of linear equation in terms of the parameter K.
2x - 3y = K
x + 2y = -2
"\\Delta = \\left| {\\begin{matrix}\n2&{ - 3}\\\\\n1&2\n\\end{matrix}} \\right| = 4 + 3 = 7"
"{\\Delta _1} = \\left| {\\begin{matrix}\nK&{ - 3}\\\\\n{ - 2}&2\n\\end{matrix}} \\right| = 2K - 6"
"{\\Delta _2} = \\left| {\\begin{matrix}\n2&K\\\\\n1&{ - 2}\n\\end{matrix}} \\right| = - 4 - K"
Then
"x = \\frac{{{\\Delta _1}}}{\\Delta } = \\frac{{2K - 6}}{7}"
"y = \\frac{{{\\Delta _2}}}{\\Delta } = \\frac{{ - 4 - K}}{7}"
Answer: "x = \\frac{{2K - 6}}{7}, y = \\frac{{ - 4 - K}}{7}"
Comments
Leave a comment