1) An orthogonal basis:
x 1 = v 1 = ( 1 , 1 , 1 , 1 ) x_1=v_1=(1,1,1,1) x 1 = v 1 = ( 1 , 1 , 1 , 1 )
x 2 = v 2 − v 2 ⋅ x 1 x 1 ⋅ x 1 x 1 = ( 1 , 1 , 2 , 4 ) − 8 4 ( 1 , 1 , 1 , 1 ) = ( − 1 , − 1 , 0 , 2 ) x_2=v_2-\frac{v_2\cdot x_1}{x_1\cdot x_1}x_1=(1,1,2,4 )-\frac{8}{4}(1,1,1,1)=(-1,-1,0,2) x 2 = v 2 − x 1 ⋅ x 1 v 2 ⋅ x 1 x 1 = ( 1 , 1 , 2 , 4 ) − 4 8 ( 1 , 1 , 1 , 1 ) = ( − 1 , − 1 , 0 , 2 )
x 3 = v 3 − v 3 ⋅ x 1 x 1 ⋅ x 1 x 1 − v 3 ⋅ x 2 x 2 ⋅ x 2 x 2 x_3=v_3-\frac{v_3\cdot x_1}{x_1\cdot x_1}x_1-\frac{v_3\cdot x_2}{x_2\cdot x_2}x_2 x 3 = v 3 − x 1 ⋅ x 1 v 3 ⋅ x 1 x 1 − x 2 ⋅ x 2 v 3 ⋅ x 2 x 2
x 3 = ( 1 , 2 , − 4 , − 3 ) + 4 4 ( 1 , 1 , 1 , 1 ) − − 1 − 2 − 6 6 ( − 1 , − 1 , 0 , 2 ) = ( 0.5 , 1.5 , − 3 , 1 ) x_3= (1,2,-4,-3)+\frac{4}{4}(1,1,1,1)-\frac{-1-2-6}{6}(-1,-1,0,2)=(0.5,1.5,-3,1) x 3 = ( 1 , 2 , − 4 , − 3 ) + 4 4 ( 1 , 1 , 1 , 1 ) − 6 − 1 − 2 − 6 ( − 1 , − 1 , 0 , 2 ) = ( 0.5 , 1.5 , − 3 , 1 )
2) An orthonormal basis:
w 1 = x 1 ∣ ∣ x 1 ∣ ∣ = 1 2 ( 1 , 1 , 1 , 1 ) w_1=\frac{x_1}{||x_1||}=\frac{1}{2}(1,1,1,1) w 1 = ∣∣ x 1 ∣∣ x 1 = 2 1 ( 1 , 1 , 1 , 1 )
w 2 = x 2 ∣ ∣ x 2 ∣ ∣ = 1 6 ( − 1 , − 1 , 0 , 2 ) w_2=\frac{x_2}{||x_2||}=\frac{1}{\sqrt{6}}(-1,-1,0,2) w 2 = ∣∣ x 2 ∣∣ x 2 = 6 1 ( − 1 , − 1 , 0 , 2 )
w 3 = x 3 ∣ ∣ x 3 ∣ ∣ = 1 12.5 ( 0.5 , 1.5 , − 3 , 1 ) = 2 5 ( 0.5 , 1.5 , − 3 , 1 ) w_3=\frac{x_3}{||x_3||}=\frac{1}{\sqrt{12.5}}(0.5,1.5,-3,1)=\frac{\sqrt{2}}{5}(0.5,1.5,-3,1) w 3 = ∣∣ x 3 ∣∣ x 3 = 12.5 1 ( 0.5 , 1.5 , − 3 , 1 ) = 5 2 ( 0.5 , 1.5 , − 3 , 1 )
Comments