Consider the subspace U of R4 spanned by the vectors.
V1 =(1,1,1,1), V2= (1,1,2,4 ), V3= (1,2,-4,-3)
Find
1) an orthogonal bassis of V.
2) an orthogonal basis of V.
1) An orthogonal basis:
"x_1=v_1=(1,1,1,1)"
"x_2=v_2-\\frac{v_2\\cdot x_1}{x_1\\cdot x_1}x_1=(1,1,2,4 )-\\frac{8}{4}(1,1,1,1)=(-1,-1,0,2)"
"x_3=v_3-\\frac{v_3\\cdot x_1}{x_1\\cdot x_1}x_1-\\frac{v_3\\cdot x_2}{x_2\\cdot x_2}x_2"
"x_3= (1,2,-4,-3)+\\frac{4}{4}(1,1,1,1)-\\frac{-1-2-6}{6}(-1,-1,0,2)=(0.5,1.5,-3,1)"
2) An orthonormal basis:
"w_1=\\frac{x_1}{||x_1||}=\\frac{1}{2}(1,1,1,1)"
"w_2=\\frac{x_2}{||x_2||}=\\frac{1}{\\sqrt{6}}(-1,-1,0,2)"
"w_3=\\frac{x_3}{||x_3||}=\\frac{1}{\\sqrt{12.5}}(0.5,1.5,-3,1)=\\frac{\\sqrt{2}}{5}(0.5,1.5,-3,1)"
Comments
Leave a comment