Question #167772

Consider the subspace U of R4 spanned by the vectors.

V1 =(1,1,1,1), V2= (1,1,2,4 ), V3= (1,2,-4,-3)

Find

1) an orthogonal bassis of V.

2) an orthogonal basis of V.






1
Expert's answer
2021-03-01T17:34:57-0500

1) An orthogonal basis:

x1=v1=(1,1,1,1)x_1=v_1=(1,1,1,1)

x2=v2v2x1x1x1x1=(1,1,2,4)84(1,1,1,1)=(1,1,0,2)x_2=v_2-\frac{v_2\cdot x_1}{x_1\cdot x_1}x_1=(1,1,2,4 )-\frac{8}{4}(1,1,1,1)=(-1,-1,0,2)

x3=v3v3x1x1x1x1v3x2x2x2x2x_3=v_3-\frac{v_3\cdot x_1}{x_1\cdot x_1}x_1-\frac{v_3\cdot x_2}{x_2\cdot x_2}x_2

x3=(1,2,4,3)+44(1,1,1,1)1266(1,1,0,2)=(0.5,1.5,3,1)x_3= (1,2,-4,-3)+\frac{4}{4}(1,1,1,1)-\frac{-1-2-6}{6}(-1,-1,0,2)=(0.5,1.5,-3,1)


2) An orthonormal basis:

w1=x1x1=12(1,1,1,1)w_1=\frac{x_1}{||x_1||}=\frac{1}{2}(1,1,1,1)

w2=x2x2=16(1,1,0,2)w_2=\frac{x_2}{||x_2||}=\frac{1}{\sqrt{6}}(-1,-1,0,2)

w3=x3x3=112.5(0.5,1.5,3,1)=25(0.5,1.5,3,1)w_3=\frac{x_3}{||x_3||}=\frac{1}{\sqrt{12.5}}(0.5,1.5,-3,1)=\frac{\sqrt{2}}{5}(0.5,1.5,-3,1)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS