Let T: R^2→R^2 be a linear opeator with matrix
[ 7 1]
[-1 1] (w.r.t. the standard basis). Use Cayley haMilton theorem to check whether T is invertible or not. If T is invertible, obtain T^-1(x,y) for (x,y)∈ R^2. If T is not invertible, obtain the minimal polynomial of T.
Solution:
Given matrix, "A=\\begin{bmatrix} 7 \\ \\ 1\\\\-1\\ 1\\end{bmatrix}"
First we find characteristic polynomial, "p(t)=\\begin{vmatrix} A-tI\\end{vmatrix}"
"=\\begin{vmatrix} 7-t \\ \\ \\ \\ 1\\\\-1\\ \\ \\ 1-t\\end{vmatrix}"
"=(7-t)(1-t)-1(-1)\n\\\\ =7-t-7t+t^2+1\n\\\\ =t^2-8t+8"
Now, applying Cayley hamilton theorem,
"O=p(A)=A^2-8A+8I"
where "O" is zero matrix and "I" is identity matrix of order 2.
So, "A^2-8A=-8I"
"\\Rightarrow-\\dfrac18A^2+A=I"
"\\Rightarrow A(-\\dfrac18A+I)=I" ...(i)
Similarly, we can write this as: "(-\\dfrac18A+I)A=I" ...(ii)
Thus, from (i) and (ii), matrix "(-\\dfrac18A+I)" is the inverse of matrix "A" .
"\\therefore A^{-1}=(-\\dfrac18A+I)"
"=-\\frac18\\begin{bmatrix} 7 \\ \\ 1\\\\-1\\ 1\\end{bmatrix}+\\begin{bmatrix} 1 \\ \\ 0\\\\0\\ 1\\end{bmatrix}"
"=\\begin{bmatrix} -\\frac78 \\ \\ -\\frac18\\\\\\frac18\\ -\\frac18\\end{bmatrix}+\\begin{bmatrix} 1 \\ \\ 0\\\\0\\ 1\\end{bmatrix}"
"=\\begin{bmatrix} \\frac18 \\frac{-1}8\\\\\\frac18\\ \\frac78\\end{bmatrix}"
This is required answer.
Comments
Leave a comment