Question #167037

Let T: R^2→R^2 be a linear opeator with matrix


[ 7 1]


[-1 1] (w.r.t. the standard basis). Use Cayley haMilton theorem to check whether T is invertible or not. If T is invertible, obtain T^-1(x,y) for (x,y)∈ R^2. If T is not invertible, obtain the minimal polynomial of T.


1
Expert's answer
2021-02-28T17:19:28-0500

Solution:

Given matrix, A=[7  11 1]A=\begin{bmatrix} 7 \ \ 1\\-1\ 1\end{bmatrix}

First we find characteristic polynomial, p(t)=AtIp(t)=\begin{vmatrix} A-tI\end{vmatrix}

=7t    11   1t=\begin{vmatrix} 7-t \ \ \ \ 1\\-1\ \ \ 1-t\end{vmatrix}

=(7t)(1t)1(1)=7t7t+t2+1=t28t+8=(7-t)(1-t)-1(-1) \\ =7-t-7t+t^2+1 \\ =t^2-8t+8

Now, applying Cayley hamilton theorem,

O=p(A)=A28A+8IO=p(A)=A^2-8A+8I

where OO is zero matrix and II is identity matrix of order 2.

So, A28A=8IA^2-8A=-8I

18A2+A=I\Rightarrow-\dfrac18A^2+A=I

A(18A+I)=I\Rightarrow A(-\dfrac18A+I)=I ...(i)

Similarly, we can write this as: (18A+I)A=I(-\dfrac18A+I)A=I ...(ii)

Thus, from (i) and (ii), matrix (18A+I)(-\dfrac18A+I) is the inverse of matrix AA .

A1=(18A+I)\therefore A^{-1}=(-\dfrac18A+I)

=18[7  11 1]+[1  00 1]=-\frac18\begin{bmatrix} 7 \ \ 1\\-1\ 1\end{bmatrix}+\begin{bmatrix} 1 \ \ 0\\0\ 1\end{bmatrix}

=[78  1818 18]+[1  00 1]=\begin{bmatrix} -\frac78 \ \ -\frac18\\\frac18\ -\frac18\end{bmatrix}+\begin{bmatrix} 1 \ \ 0\\0\ 1\end{bmatrix}

=[181818 78]=\begin{bmatrix} \frac18 \frac{-1}8\\\frac18\ \frac78\end{bmatrix}

This is required answer.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS