Apply the fundamental theorem of homomorphism to prove that
R^4/R^2 is isomorphic to R^2
Consider the groups "(\\mathbb R^4, +)" and "(\\mathbb R^2, +)", and define the map "\\psi: \\mathbb R^4 \\to\\mathbb R^2, \\ \\psi(x_1,x_2,x_3,x_4)=(x_1,x_2)."
Since "\\psi((x_1,x_2,x_3,x_4)+(y_1,y_2,y_3,y_4))=\\psi(x_1+y_1,x_2+y_2,x_3+y_3,x_4+y_4)=\n(x_1+y_1, x_2+y_2)=(x_1,y_1)+(x_2,y_2)=\\psi(x_1,x_2,x_3,x_4)+\\psi(y_1,y_2,y_3,y_4),"
we conclude that "\\psi" is a homomorphism.
Let us find kernel:
"\\ker(\\psi)=\\{(x_1,x_2,x_3,x_4)\\in\\mathbb R^4\\ |\\ \\psi(x_1,x_2,x_3,x_4)=(0,0)\\} =\n\\{(x_1,x_2,x_3,x_4)\\in\\mathbb R^4\\ |\\ (x_1,x_2)=(0,0)\\} \n=\\{(0,0,x_3,x_4)\\ |\\ x_3,x_4\\in\\mathbb R\\}."
The bijective map "f: \\mathbb R^2 \\to \\ker(\\psi),\\ f(a_1,a_2)=(0,0,a_1,a_2)," is an isomomorphism. Indeed, "f((a_1,a_2)+(b_1,b_2))=f(a_1+b_1,a_2+b_2)=\n(0,0,a_1+b_1, a_2+b_2)=(0,0,a_1,a_2)+(0,0,b_1,b_2)=f(a_1,a_2)+f(b_1,b_2)."
Taking into account that "Im(\\psi)=\\mathbb R^2,\\ \\ker(\\psi)\\cong\\mathbb R^2," and according to the fundamental theorem of homomorphism "\\mathbb R^4\/\\ker(\\psi)\\cong Im(\\psi)", we conclude that "\\mathbb R^4\/\\mathbb R^2\\cong \\mathbb R^2."
Comments
Leave a comment