Answer to Question #166667 in Linear Algebra for Sarita bartwal

Question #166667

Apply the fundamental theorem of homomorphism to prove that

R^4/R^2 is isomorphic to R^2


1
Expert's answer
2021-02-25T18:29:27-0500

Consider the groups (R4,+)(\mathbb R^4, +) and (R2,+)(\mathbb R^2, +), and define the map ψ:R4R2, ψ(x1,x2,x3,x4)=(x1,x2).\psi: \mathbb R^4 \to\mathbb R^2, \ \psi(x_1,x_2,x_3,x_4)=(x_1,x_2).


Since ψ((x1,x2,x3,x4)+(y1,y2,y3,y4))=ψ(x1+y1,x2+y2,x3+y3,x4+y4)=(x1+y1,x2+y2)=(x1,y1)+(x2,y2)=ψ(x1,x2,x3,x4)+ψ(y1,y2,y3,y4),\psi((x_1,x_2,x_3,x_4)+(y_1,y_2,y_3,y_4))=\psi(x_1+y_1,x_2+y_2,x_3+y_3,x_4+y_4)= (x_1+y_1, x_2+y_2)=(x_1,y_1)+(x_2,y_2)=\psi(x_1,x_2,x_3,x_4)+\psi(y_1,y_2,y_3,y_4),

we conclude that ψ\psi is a homomorphism.


Let us find kernel:


ker(ψ)={(x1,x2,x3,x4)R4  ψ(x1,x2,x3,x4)=(0,0)}={(x1,x2,x3,x4)R4  (x1,x2)=(0,0)}={(0,0,x3,x4)  x3,x4R}.\ker(\psi)=\{(x_1,x_2,x_3,x_4)\in\mathbb R^4\ |\ \psi(x_1,x_2,x_3,x_4)=(0,0)\} = \{(x_1,x_2,x_3,x_4)\in\mathbb R^4\ |\ (x_1,x_2)=(0,0)\} =\{(0,0,x_3,x_4)\ |\ x_3,x_4\in\mathbb R\}.


The bijective map f:R2ker(ψ), f(a1,a2)=(0,0,a1,a2),f: \mathbb R^2 \to \ker(\psi),\ f(a_1,a_2)=(0,0,a_1,a_2), is an isomomorphism. Indeed, f((a1,a2)+(b1,b2))=f(a1+b1,a2+b2)=(0,0,a1+b1,a2+b2)=(0,0,a1,a2)+(0,0,b1,b2)=f(a1,a2)+f(b1,b2).f((a_1,a_2)+(b_1,b_2))=f(a_1+b_1,a_2+b_2)= (0,0,a_1+b_1, a_2+b_2)=(0,0,a_1,a_2)+(0,0,b_1,b_2)=f(a_1,a_2)+f(b_1,b_2).


Taking into account that Im(ψ)=R2, ker(ψ)R2,Im(\psi)=\mathbb R^2,\ \ker(\psi)\cong\mathbb R^2, and according to  the fundamental theorem of homomorphism R4/ker(ψ)Im(ψ)\mathbb R^4/\ker(\psi)\cong Im(\psi), we conclude that R4/R2R2.\mathbb R^4/\mathbb R^2\cong \mathbb R^2.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment