{u1,u2,u3} is basis of V.
"c_1u_1+c_2u_2+c_3u_3=0"
"v_1=u_1-2u_2"
"v_2=2u_1-7u_2+4u_3"
"v_3=-3u_1+8u_2-u_3"
We can solve these three equations to get v1,v2,v3 in terms of u1,u2,u3.
"u_1=(23v_1+2v_2+8v_3)\/3"
"u_2=(10v_1+v_2+4v_3)\/3"
"u_3=(11v_1+2v_2+5v_3)\/3"
Putting these in "c_1u_1+c_2u_2+c_3u_3=0"
"c_1(23v_1+2v_2+8v_3)\/3+c_2(10v_1+v_2+4v_3)\/3+c_3(11v_1+2v_2+5v_3)\/3=0"
"v_1(23c_1+10c_2+11c_3)\/3+v_2(2c_1+c_2+2c_3)\/3+v_3(8c_1+4c_2+5c_3)\/3=0"
"d_1v_1+d_2v_2+d_3v_3=0"
"d_1=(23c_1+10c_2+11c_3)\/3"
"d_2=(2c_1+c_2+2c_3)\/3"
"d_3=(8c_1+4c_2+5c_3)\/3"
"c_1=c_2=c_3=0"
So, "d_1=d_2=d_3=0"
Thus, {v1,v2,v3} spans and is linearly independent.
{v1 , v2 , v3 } is also a basis of V.
Comments
There are different methods to solve a linear system of equations with respect to variables u1, u2, u3. For example, Gaussian elimination (reduction), elimination of variables, Cramer's rule, the inverse matrix method. Some hints about these methods can be found at https://web.mit.edu/16.unified/www/FALL/signalssystems/linear_algebra.pdf, https://www.mathcentre.ac.uk/resources/Engineering%20maths%20first%20aid%20kit/latexsource%20and%20diagrams/5_6.pdf .
How do u get the u1=(23v1+2v2+8v3)/3 u2=(10v1+v2+4v3)/3 u3=(11v1+2v2+5v3)/3 Don't quite really understand this part. Could you kindly elaborate on it?
Leave a comment